1
|
Karpurapu M, Yan J, Chung S, Pannu SR, Parinandi N, Berdyshev E, Zhang L, Christman JW. Specialized Pro-Resolving Mediator loaded Extracellular Vesicles Mitigate Pulmonary Inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.09.648009. [PMID: 40291690 PMCID: PMC12027339 DOI: 10.1101/2025.04.09.648009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Specialized pro-resolving mediators (SPMs), including lipoxins derived from arachidonic acid and resolvins, protectins, and maresins derived from docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), orchestrate the active resolution of inflammation. These SPMs are biosynthesized through the coordinated interaction of various cells in a process known as transcellular biosynthesis, involving the sequential action of cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), 12-lipoxygenase (12-LOX), and/or 15-lipoxygenase (15-LOX) enzymes. Additionally, Aspirin-triggered Resolvins are produced by acetylated COX-2, along with various lipoxygenases. Although SPMs regulate various cellular processes to actively resolve inflammation, their in vivo levels are typically low. To address this limitation, we engineered a multigene expression vector that co-expresses COX-2, 5-LOX, and 15-LOX, potentiating the synthesis of various SPMs. HEK293T cells transfected with this vector and cultured with fatty acid-free BSA-complexed DHA, EPA, and aspirin, successfully mimicked both transcellular and aspirin-triggered biosynthesis of Resolvins. These Resolvins are packaged into extracellular vesicles, which significantly inhibited neutrophil adhesion to endothelial cells, preserved endothelial monolayer barrier integrity, suppressed NF-κB reporter activity, and enhanced macrophage efferocytosis in vitro . Notably, post-injury administration of Resolvin-loaded EVs mitigated pulmonary inflammation in LPS-treated mice without causing systemic or pulmonary toxicity. In summary, we report a novel cell-based platform for generating Resolvin-loaded EVs that mitigate pulmonary inflammation in mouse models, underscoring their potential for treating other acute inflammatory diseases.
Collapse
|
2
|
Nshimiyimana R, Glynn SJ, Serhan CN, Petasis NA. Stereocontrolled total synthesis of Resolvin D4 and 17( R)-Resolvin D4. Org Biomol Chem 2023; 21:1667-1673. [PMID: 36345797 PMCID: PMC9974885 DOI: 10.1039/d2ob01697d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The total synthesis of Resolvin D4 and its 17(R)-hydroxy-epimer is reported. These lipid-based natural products are biosynthesized from docosahexaenoic acid (DHA, C22:6) during the body's rapid cellular and chemical response to injurious stimuli and are part of a large class of bioactive molecules that resolve inflammation. Our convergent synthesis employed a chiral pool strategy starting from glycidol derivatives and D-erythrose to introduce stereogenic centers. A copper(I)-mediated cross coupling between propargyl bromide and terminal acetylenic precursors yielded core structures of late-stage key intermediates. A simultaneous Lindlar reduction of the skipped diynyl moiety followed by silyl group cleavage securely completed the synthesis. The synthetic availability of these molecules helped further elucidate their stereoselective biofunctions.
Collapse
Affiliation(s)
- Robert Nshimiyimana
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA 90089, USA.
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephen J Glynn
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA 90089, USA.
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nicos A Petasis
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
3
|
Li X, Liao C, Xu Y, Lu QH, Chen S, Su L, Zou Y, Shao F, Lu W, Zhang WD, Hu HG. Configuration-Specific Antibody for Bacterial Heptosylation: An Antiadhesion Therapeutic Strategy. J Am Chem Soc 2023; 145:322-333. [PMID: 36542493 DOI: 10.1021/jacs.2c09990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alternative antibacterial therapies refractory to existing mechanisms of antibiotic resistance are urgently needed. One such attractive therapy is to inhibit bacterial adhesion and colonization. Ser O-heptosylation (Ser O-Hep) on autotransporters of Gram-negative bacteria is a novel glycosylation and has been proven to be essential for bacterial colonization. Herein, we chemically synthesized glycopeptides containing this atypical glycan structure and an absolute C6 configuration through the assembly of Ser O-Hep building blocks. Using glycopeptides as haptens, we generated first-in-class poly- and monoclonal antibodies, termed Anti-SerHep1a and Anti-SerHep1b, that stereoselectively recognize Ser O-heptosylation (d/l-glycero) with high specificity in vitro and in vivo. Importantly, these antibodies effectively blocked diffusely adhering Escherichia coli 2787 adhesion to HeLa cells and in mice in a dose- and Ser O-Hep-dependent manner. Together, these antibodies represent not only useful tools for the discovery of unknown serine O-heptosylated proteins bearing various C6 chiral centers but also a novel class of antiadhesion therapeutic agents for the treatment of bacterial infection.
Collapse
Affiliation(s)
- Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.,School of Medicine or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Chongbing Liao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Yue Xu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qiu-He Lu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Si Chen
- School of Medicine or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Li Su
- School of Medicine or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Yan Zou
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Wei-Dong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hong-Gang Hu
- School of Medicine or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Thiraporn A, Saikachain N, Khumjiang R, Muanprasat C, Tadpetch K. Total Synthesis and Biological Evaluation of Mutolide and Analogues. Chem Asian J 2022; 17:e202200329. [PMID: 35727893 DOI: 10.1002/asia.202200329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/20/2022] [Indexed: 11/07/2022]
Abstract
The convergent total syntheses of three 14-membered macrolide natural products, mutolide, nigrosporolide and (4S,7S,13S)-4,7-dihydroxy-13-tetradeca-2,5,8-trienolide have been achieved. The key synthetic features include Shiina macrolactonization to assemble the 14-membered macrocyclic core, Wittig or Still-Gennari olefination and selective reduction of propargylic alcohol to construct the E- or Z-olefins. Cross metathesis was also highlighted as an efficient tool to forge the formation of E-olefin. The three synthetic macrolides were evaluated for their cytotoxic activity against three human cancer cell lines as well as for inhibitory effect on CFTR-mediated chloride secretion in human intestinal epithelial (T84) cells. Mutolide displayed significant cytotoxic activity against HCT116 colon cancer cells with an IC50 of ∼12 μM as well as a potent CTFR inhibitory effect with an IC50 value of ∼1 μM.
Collapse
Affiliation(s)
- Aticha Thiraporn
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Nongluk Saikachain
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pla, Bang Pli, Samut Prakan, 10540, Thailand
| | - Rungtiwa Khumjiang
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pla, Bang Pli, Samut Prakan, 10540, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pla, Bang Pli, Samut Prakan, 10540, Thailand
| | - Kwanruthai Tadpetch
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
5
|
Lee CF, Brown CE, Nielsen AJ, Kim C, Livne-Bar I, Parsons PJ, Boldron C, Autelitano F, Weaver DF, Sivak JM, Reed MA. A Stereocontrolled Total Synthesis of Lipoxin B4 and its Biological Activity as a Pro-Resolving Lipid Mediator of Neuroinflammation. Chemistry 2022; 28:e202200360. [PMID: 35491534 PMCID: PMC9891714 DOI: 10.1002/chem.202200360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 02/03/2023]
Abstract
Two stereocontrolled, efficient, and modular syntheses of eicosanoid lipoxin B4 (LXB4 ) are reported. One features a stereoselective reduction followed by an asymmetric epoxidation sequence to set the vicinal diol stereocentres. The dienyne was installed via a one-pot Wittig olefination and base-mediated epoxide ring opening cascade. The other approach installed the diol through an asymmetric dihydroxylation reaction followed by a Horner-Wadsworth-Emmons olefination to afford the common dienyne intermediate. Finally, a Sonogashira coupling and an alkyne hydrosilylation/proto-desilylation protocol furnished LXB4 in 25 % overall yield in just 10 steps. For the first time, LXB4 has been fully characterized spectroscopically with its structure confirmed as previously reported. We have demonstrated that the synthesized LXB4 showed similar biological activity to commercial sources in a cellular neuroprotection model. This synthetic route can be employed to synthesize large quantities of LXB4 , enable synthesis of new analogs, and chemical probes for receptor and pathway characterization.
Collapse
Affiliation(s)
- C. Frank Lee
- Centre for Medicinal Chemistry and Drug Discovery, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Carla E. Brown
- Centre for Medicinal Chemistry and Drug Discovery, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Alexander J. Nielsen
- Centre for Medicinal Chemistry and Drug Discovery, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Changmo Kim
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Ophthalmology & Vision Science University of Toronto Toronto, Ontario, Canada
- Department of Medicine University of Toronto Toronto, Ontario, Canada
| | - Izhar Livne-Bar
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Ophthalmology & Vision Science University of Toronto Toronto, Ontario, Canada
| | - Philip J. Parsons
- Molecular Sciences Research Hub, White City Campus, Imperial College London, London, United Kingdom
| | | | | | - Donald F. Weaver
- Centre for Medicinal Chemistry and Drug Discovery, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Fundamental Neurobiology Krembil Research Institute, University Health Network Toronto, Ontario, Canada
- Department of Chemistry University of Toronto Toronto, Ontario, Canada
- Department of Medicine University of Toronto Toronto, Ontario, Canada
| | - Jeremy M. Sivak
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Ophthalmology & Vision Science University of Toronto Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology University of Toronto Toronto, Ontario, Canada
| | - Mark A. Reed
- Centre for Medicinal Chemistry and Drug Discovery, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology University of Toronto Toronto, Ontario, Canada
| |
Collapse
|
6
|
Serhan CN, Libreros S, Nshimiyimana R. E-series resolvin metabolome, biosynthesis and critical role of stereochemistry of specialized pro-resolving mediators (SPMs) in inflammation-resolution: Preparing SPMs for long COVID-19, human clinical trials, and targeted precision nutrition. Semin Immunol 2022; 59:101597. [PMID: 35227568 PMCID: PMC8847098 DOI: 10.1016/j.smim.2022.101597] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 01/15/2023]
Abstract
The COVID-19 pandemic has raised international awareness of the importance of rigorous scientific evidence and the havoc caused by uncontrolled excessive inflammation. Here we consider the evidence on whether the specialized pro-resolving mediators (SPMs) are ready to meet this challenge as well as targeted metabololipidomics of the resolution-inflammation metabolomes. Specific stereochemical mechanisms in the biosynthesis of SPMs from omega-3 essential fatty acids give rise to unique local-acting lipid mediators. SPMs possess stereochemically defined potent bioactive structures that are high-affinity ligands for cognate G protein-coupled surface receptors that evoke the cellular responses required for efficient resolution of acute inflammation. The SPMs biosynthesized from the major omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are coined Resolvins (resolution phase interaction products; E series and D-series), Protectins and Maresins (macrophage mediators in resolving inflammation). Their biosynthesis and stereochemical assignments are established and confirmed (>1,441 resolvin publications in PubMed.gov) as well as their functional roles on innate immune cells and adaptive immune cells (both lymphocyte T-cell subsets and B-cells). The resolution of a protective acute inflammatory response is governed mainly by phagocytes that actively clear apoptotic cells, debris, blood clots and pathogens. These resolution phase functions of the acute inflammatory response are enhanced by SPMs, which together prepare the inflammatory loci for homeostasis and stimulate tissue regeneration via activating stem cells and the biosynthesis of novel cys-SPMs (e.g. MCTRs, PCTRs and RCTRs). These cys-SPMs also activate regeneration, are organ protective and stimulate resolution of local inflammation. Herein, we review the biosynthesis and functions of the E-series resolvins, namely resolvin E1 (the first n-3 resolvin identified), resolvin E2, resolvin E3 and resolvin E4 biosynthesized from their precursor eicosapentaenoic acid (EPA), and the critical role of total organic synthesis in confirming SPM complete stereochemistry, establishing their potent functions in resolution of inflammation, and novel structures. The physical properties of each biologically derived SPM, i.e., ultra-violet (UV) absorbance, chromatographic behavior, and tandem mass spectrometry (MS2) fragmentation, were matched to SPMs biosynthesized and prepared by stereospecific total organic synthesis. We briefly review this approach, also used with the endogenous D-series resolvins, protectins and maresins confirming their potent functions in resolution of inflammation, that paves the way for their rigorous evaluation in human tissues and clinical trials. The assignment of complete stereochemistry for each of the E and D series Resolvins, Protectins and Maresins was a critical and required step that enabled human clinical studies as in SPM profiling in COVID-19 infections and experimental animal disease models that also opened the promise of resolution physiology, resolution pharmacology and targeted precision nutrition as new areas for monitoring health and disease mechanisms.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Colombo D, Brenna E, Casali B, Ghezzi MC, Parmeggiani F, Tentori F, Tessaro D, Boratyński F. Oxidation of
threo
‐9,10‐Dihydroxystearic Acid Mediated by
Micrococcus luteus
as a Key Step in the Conversion of Oleic Acid into Pelargonic and Azelaic Acids. ChemCatChem 2021. [DOI: 10.1002/cctc.202100514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Danilo Colombo
- Dipartimento di Chimica Materiali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano Piazza Leonardo da Vinci, 32 20133 Milano Italy
| | - Elisabetta Brenna
- Dipartimento di Chimica Materiali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano Piazza Leonardo da Vinci, 32 20133 Milano Italy
| | - Beatrice Casali
- Dipartimento di Chimica Materiali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano Piazza Leonardo da Vinci, 32 20133 Milano Italy
| | - Maria Chiara Ghezzi
- Dipartimento di Chimica Materiali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano Piazza Leonardo da Vinci, 32 20133 Milano Italy
| | - Fabio Parmeggiani
- Dipartimento di Chimica Materiali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano Piazza Leonardo da Vinci, 32 20133 Milano Italy
| | - Francesca Tentori
- Dipartimento di Chimica Materiali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano Piazza Leonardo da Vinci, 32 20133 Milano Italy
| | - Davide Tessaro
- Dipartimento di Chimica Materiali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano Piazza Leonardo da Vinci, 32 20133 Milano Italy
| | - Filip Boratyński
- Department of Chemistry Wroclaw University of Environmental and Life Sciences Norwida 25 50-375 Wrocław Poland
| |
Collapse
|
8
|
Chiang N, Serhan CN. Specialized pro-resolving mediator network: an update on production and actions. Essays Biochem 2020; 64:443-462. [PMID: 32885825 PMCID: PMC7682745 DOI: 10.1042/ebc20200018] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Today, persistent and uncontrolled inflammation is appreciated to play a pivotal role in many diseases, such as cardiovascular diseases, neurodegenerative diseases, metabolic syndrome and many other diseases of public health concern (e.g. Coronavirus Disease 2019 (COVID-19) and periodontal disease). The ideal response to initial challenge in humans is a self-limited inflammatory response leading to complete resolution. The resolution phase is now widely recognized as a biosynthetically active process, governed by a superfamily of endogenous chemical mediators that stimulate resolution of inflammatory responses, namely specialized proresolving mediators (SPMs). Because resolution is the natural ideal response, the SPMs have gained attention. SPMs are mediators that include ω-6 arachidonic acid-derived lipoxins, ω-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)-derived resolvins, protectins and maresins, cysteinyl-SPMs, as well as n-3 docosapentaenoic acid (DPA)-derived SPMs. These novel immunoresolvents, their biosynthetic pathways and receptors have proven to promote resolution of inflammation, clearance of microbes, reduce pain and promote tissue regeneration via specific cellular and molecular mechanisms. As of 17 August, 2020, PubMed.gov reported >1170 publications for resolvins, confirming their potent protective actions from many laboratories worldwide. Since this field is rapidly expanding, we provide a short update of advances within 2-3 years from human and preclinical animal studies, together with the structural-functional elucidation of SPMs and identification of novel SPM receptors. These new discoveries indicate that SPMs, their pathways and receptors could provide a basis for new approaches for treating inflammation-associated diseases and for stimulating tissue regeneration via resolution pharmacology and precision nutrition.
Collapse
Affiliation(s)
- Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, U.S.A
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, U.S.A
| |
Collapse
|
9
|
Gimazetdinov AM, Al’mukhametov AZ, Miftakhov MS. 1,8-Diazabicyclo[5.4.0]undec-7-ene-Promoted Oxidation by Atmospheric Oxygen of an Allylsilane Derived from γ-Formyl-Substituted Cyclopentene. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020020128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Abstract
We studied the synthesis of RvD1, a pro-resolving mediator. The intermediate containing vic-diol and enal functional groups was prepared via the oxidation of the γ,δ-epoxy alcohol followed by the epoxide ring opening in one pot. The C11-aldehyde in the resulting enal was converted to the trans iodo-olefin by reaction with TMSC(N2)Li and subsequent hydrozirconation using in situ generated Cp2Zr(H)Cl followed by iodination. The trans enynyl alcohol was synthesized by the reaction of the TMS-containing epoxy alcohol with lithium TMS-acetylide. Finally, two fragments were joined by the Sonogashira coupling, and the triple bond was reduced to afford RvD1 stereoselectively.
Collapse
Affiliation(s)
- Masao Morita
- Department of Biotechnology, Tokyo Institute of Technology, B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan.
| | | | | |
Collapse
|