1
|
Jeong J, Cao S, Kang HJ, Yoon H, Lee J, Shin S, Kim D, Hong S. Divergent Enantioselective Access to Diverse Chiral Compounds from Bicyclo[1.1.0]butanes and α,β-Unsaturated Ketones under Catalyst Control. J Am Chem Soc 2024; 146:27830-27842. [PMID: 39348293 DOI: 10.1021/jacs.4c10153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Achieving structural and stereogenic diversity from the same starting materials remains a fundamental challenge in organic synthesis, requiring precise control over the selectivity. Here, we report divergent catalytic methods that selectively yield either cycloaddition or addition/elimination products from bicyclo[1.1.0]butanes and α,β-unsaturated ketones. By employing chiral Lewis acid or Brønsted acid catalysts, we achieved excellent regio-, diastereo-, and enantioselectivity across all three distinct transformations, affording a diverse array of synthetically valuable chiral bicyclo[2.1.1]hexanes and cyclobutenes. The divergent outcomes are controlled by the differential activation of the substrates by the specific chiral catalyst with the reaction conditions dictating the pathway selectivity. This strategy demonstrates the power of divergent catalysis in creating molecular complexity and diversity, offering a valuable tool for the synthesis of enantioenriched chiral building blocks.
Collapse
Affiliation(s)
- Jinwook Jeong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Shi Cao
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Hyung-Joon Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Heeseong Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jaebin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sanghoon Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
2
|
Chen L, Wang G, Nong X, Shao W, Li J, Guo Y, Fan B. Asymmetric 1,4-Addition of Diarylphosphine Oxides to α, β-Unsaturated 2-Acyl Imidazoles. Chemistry 2024; 30:e202401017. [PMID: 38652470 DOI: 10.1002/chem.202401017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Here we introduce a metal-free, catalytic and enantioselective strategy from α,β-unsaturated 2-acyl imidazoles to the chiral phosphorous 2-acyl imidazoles. Interestingly, this methodology was catalyzed by the classical and commercial oxazaborolidine under mild conditions. This strategy features a wide range of substrates scope with good yields and excellent enantioselectivities. The possible mechanism further suggests the key of this reaction through the cleavage of diarylphosphine oxides using Frustrated Lewis Pairs theory.
Collapse
Affiliation(s)
- Lirong Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, 2929 Yuehua road, Kunming, 650500, China
| | - Guiyong Wang
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, 2929 Yuehua road, Kunming, 650500, China
| | - Xiufei Nong
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, 2929 Yuehua road, Kunming, 650500, China
| | - Wendi Shao
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, 2929 Yuehua road, Kunming, 650500, China
| | - Jiuling Li
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, 2929 Yuehua road, Kunming, 650500, China
| | - Yafei Guo
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, 2929 Yuehua road, Kunming, 650500, China
| | - Baomin Fan
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, 2929 Yuehua road, Kunming, 650500, China
| |
Collapse
|
3
|
Mohammadlou A, Joshi C, Smith BP, Zheng L, Corio SA, Canestraight VM, Torabi Kohlbouni S, Taimoory SM, Borhan B, Staples R, Vetticatt MJ, Wulff WD. A Lewis Acid-Controlled Enantiodivergent Epoxidation of Aldehydes. ACS Catal 2023; 13:13117-13126. [PMID: 38516048 PMCID: PMC10956421 DOI: 10.1021/acscatal.3c03929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Two epoxidation catalysts, one of which consists of two VANOL ligands and an aluminum and the other that consists of two VANOL ligands and a boron, were compared. Both catalysts are highly effective in the catalytic asymmetric epoxidation of a variety of aromatic and aliphatic aldehydes with diazoacetamides, giving high yields and excellent asymmetric inductions. The aluminum catalyst is effective at 0 °C and the boron catalyst at -40 °C. Although both the aluminum and boron catalysts of (R)-VANOL give very high asymmetric inductions (up to 99% ee), they give opposite enantiomers of the epoxide. The mechanism, rate- and enantioselectivity-determining step, and origin of enantiodivergence are evaluated using density functional theory calculations.
Collapse
Affiliation(s)
- Aliakbar Mohammadlou
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Chetan Joshi
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Brendyn P Smith
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Li Zheng
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Stephanie A Corio
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Virginia M Canestraight
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | | | - S Maryamdokht Taimoory
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Richard Staples
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Mathew J Vetticatt
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - William D Wulff
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
4
|
Karimi B, Jafari E, Mansouri F, Tavakolian M. Catalytic asymmetric Friedel-Crafts alkylation of unprotected indoles with nitroalkenes using a novel chiral Yb(OTf) 3-pybox complex. Sci Rep 2023; 13:14736. [PMID: 37679477 PMCID: PMC10484919 DOI: 10.1038/s41598-023-41921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023] Open
Abstract
Chiral chloro-indeno pybox has served as a new ligand for the Yb(OTf)3-catalyzed asymmetric Friedel-Crafts alkylation reaction of indoles with nitroalkenes. The tunable nature of pybox ligands enables the rational design of catalysts for optimal performance in terms of both activity and stereoselectivity in a Friedel-Crafts-type reaction. Good to excellent yields and enantioselectivities were obtained for a relatively wide range of substrates, including sterically hindered compounds, under optimized reaction conditions.
Collapse
Affiliation(s)
- Babak Karimi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, PO-Box 45195-1159, Zanjan, 45137-66731, Iran.
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, Zanjan, 45137-66731, Iran.
| | - Ehsan Jafari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, PO-Box 45195-1159, Zanjan, 45137-66731, Iran
| | - Fariborz Mansouri
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, PO-Box 45195-1159, Zanjan, 45137-66731, Iran
| | - Mina Tavakolian
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, PO-Box 45195-1159, Zanjan, 45137-66731, Iran
| |
Collapse
|
5
|
He H, Shen X, Ding X, Antilla JC. Enantioselective Mukaiyama-Michael Reaction of β,γ-Unsaturated α-Keto Esters with Silyl Ketene Acetals Catalyzed by a Chiral Magnesium Phosphate. Org Lett 2023; 25:782-787. [PMID: 36700837 DOI: 10.1021/acs.orglett.2c04277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We would like to describe an efficient and highly enantioselective Mukaiyama-Michael reaction of silyl ketene acetals with β,γ-unsaturated α-keto esters catalyzed by a chiral magnesium BINOL-derived phosphate. The resulting functionalized 1,5-dicarbonyl adducts are obtained in high yields (up to 96%) and with excellent enantioselectivities (up to 98%) under mild conditions. Two plausible mechanistic pathways were proposed, including a 1,4-addition and a hetero Diels-Alder [4 + 2] cycloaddition.
Collapse
Affiliation(s)
- Hualing He
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province 310018, P. R. China
| | - Xizhe Shen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province 310018, P. R. China
| | - Xinying Ding
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province 310018, P. R. China
| | - Jon C Antilla
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province 310018, P. R. China
| |
Collapse
|
6
|
Wang M, Song R, Yang D, Lv J. Asymmetric Binary Acid Catalysis: Switchable Enantioselectivity in Enantioselective Conjugate Hydride Reduction. Org Lett 2023; 25:373-377. [PMID: 36627725 DOI: 10.1021/acs.orglett.2c04087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The exchange of the metal ion from Zr(IV) to Fe(III) leads to a switch in the enantioselectivity of binary acid-catalyzed conjugate hydride reductions. In the presence of Hantzsch ester, γ-indolyl β,γ-unsaturated α-keto esters could be reduced to the desired (S)- or (R)-products, respectively, with good to excellent enantioselectivity (up to 98% ee).
Collapse
Affiliation(s)
- Man Wang
- Key Laboratory of Optic-electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Ran Song
- Key Laboratory of Optic-electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Daoshan Yang
- Key Laboratory of Optic-electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
7
|
Yao C, Chen Y, Wang C, Sun R, Chang H, Jiang R, Li L, Wang X, Li YM. Binaphthyl-Proline Hybrid Chiral Ligands: Modular Design, Synthesis, and Enantioswitching in Cu(II)-Catalyzed Enantioselective Henry Reactions. J Org Chem 2022. [DOI: 10.1021/acs.joc.2c01127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Yao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Yaoqi Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Chao Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Ruize Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Haotian Chang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Ruiheng Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Lin Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Xin Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Yue-Ming Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Das A, Joshi H, Singh VK. Asymmetric α-Functionalization of 2-Alkyl Azaarenes: Synthesis of Tertiary Fluorides Having Vicinal Stereogenic Centers. Org Lett 2021; 23:9441-9445. [PMID: 34870439 DOI: 10.1021/acs.orglett.1c03626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An enantioselective approach for synthesizing fluorinated azaarenes containing vicinal quaternary-tertiary stereocenters is summarized. The chiral copper(I)-phosphine complex binds with the azaarenes followed by Michael addition to unsaturated acyl imidazoles, resulting in α-functionalized products with an excellent level of enantioselectivities (up to 99%), diastereoselectivities (>20:1), and yields (up to 97%). Furthermore, post-functionalization of the acyl imidazole part has also been demonstrated.
Collapse
Affiliation(s)
- Arko Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Harshit Joshi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
9
|
Riehl PS, Richardson AD, Sakamoto T, Reid JP, Schindler CS. Origin of enantioselectivity reversal in Lewis acid-catalysed Michael additions relying on the same chiral source. Chem Sci 2021; 12:14133-14142. [PMID: 34760198 PMCID: PMC8565382 DOI: 10.1039/d1sc03741b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/04/2021] [Indexed: 01/19/2023] Open
Abstract
Enantiodivergence is an important concept in asymmetric catalysis that enables access to both enantiomers of a product relying on the same chiral source as reagent. This strategy is particularly appealing as an alternate approach when only one enantiomer of the required chiral ligand is readily accessible but both enantiomers of the product are desired. Despite the potential significance, general catalytic methods to effectively reverse enantioselectivity by changing an achiral reaction parameter remain underdeveloped. Herein we report our studies focused on elucidating the origin of metal-controlled enantioselectivity reversal in Lewis acid-catalysed Michael additions. Rigorous experimental and computational investigations reveal that specific Lewis and Brønsted acid interactions between the substrate and ligand change depending on the ionic radius of the metal catalyst, and are key factors responsible for the observed enantiodivergence. This holds potential to further our understanding of and facilitate the design of future enantiodivergent transformations. Enantiodivergence is an important concept in asymmetric catalysis that enables access to both enantiomers of a product relying on the same chiral source as reagent.![]()
Collapse
Affiliation(s)
- Paul S Riehl
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
| | - Alistair D Richardson
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
| | - Tatsuhiro Sakamoto
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
| | - Jolene P Reid
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Corinna S Schindler
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
| |
Collapse
|
10
|
Wei J, Huang JS, Che CM. Iron-Catalyzed Highly Enantioselective Addition of Silyl Enol Ethers to α,β-Unsaturated 2-Acyl Imidazoles. Org Lett 2021; 23:6993-6997. [PMID: 34428074 DOI: 10.1021/acs.orglett.1c02699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A chiral FeII(N4) complex (N4 = (R,R)-N,N'-bis(2-isopropylquinolin-8-yl)-1,2-diphenylethane-1,2-diamine) was developed for the asymmetric conjugate addition of silyl enol ethers, including both acyclic ones and cyclohexenone-derived ones, to α,β-unsaturated 2-acyl imidazoles. This FeII complex is an effective chiral Lewis acid and was applied in the synthesis of an array of chiral 1,5-dicarbonyl synthons and cyclohexenone derivatives with high yields and enantioselectivities (up to 99% ee).
Collapse
Affiliation(s)
- Jinhu Wei
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.,International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.,HKU Shenzhen Institute of Research & Innovation, Shenzhen 518055, China
| |
Collapse
|
11
|
Connon R, Roche B, Rokade BV, Guiry PJ. Further Developments and Applications of Oxazoline-Containing Ligands in Asymmetric Catalysis. Chem Rev 2021; 121:6373-6521. [PMID: 34019404 PMCID: PMC8277118 DOI: 10.1021/acs.chemrev.0c00844] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/27/2022]
Abstract
The chiral oxazoline motif is present in many ligands that have been extensively applied in a series of important metal-catalyzed enantioselective reactions. This Review aims to provide a comprehensive overview of the most significant applications of oxazoline-containing ligands reported in the literature starting from 2009 until the end of 2018. The ligands are classified not by the reaction to which their metal complexes have been applied but by the nature of the denticity, chirality, and donor atoms involved. As a result, the continued development of ligand architectural design from mono(oxazolines), to bis(oxazolines), to tris(oxazolines) and tetra(oxazolines) and variations thereof can be more easily monitored by the reader. In addition, the key transition states of selected asymmetric transformations will be given to illustrate the features that give rise to high levels of asymmetric induction. As a further aid to the reader, we summarize the majority of schemes with representative examples that highlight the variation in % yields and % ees for carefully selected substrates. This Review should be of particular interest to the experts in the field but also serve as a useful starting point to new researchers in this area. It is hoped that this Review will stimulate both the development/design of new ligands and their applications in novel metal-catalyzed asymmetric transformations.
Collapse
Affiliation(s)
- Robert Connon
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Brendan Roche
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Balaji V. Rokade
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Patrick J. Guiry
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
12
|
Ouyang J, Bae H, Jordi S, Dao QM, Dossenbach S, Dehn S, Lingnau JB, Kanta De C, Kraft P, List B. Das riechende Prinzip des Vetiveröls, aufgeklärt durch chemische Synthese. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jie Ouyang
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Hanyong Bae
- Department of Chemistry Sungkyunkwan University 2066, Seobu-ro Jangan-gu Suwon 16419 Republik Korea
| | - Samuel Jordi
- Givaudan Schweiz AG Fragrances S&T, Riechstoff-Forschung Kemptpark 50 8310 Kemptthal Schweiz
| | - Quang Minh Dao
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Sandro Dossenbach
- Givaudan Schweiz AG Fragrances S&T, Riechstoff-Forschung Kemptpark 50 8310 Kemptthal Schweiz
| | - Stefanie Dehn
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Julia B. Lingnau
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Chandra Kanta De
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Philip Kraft
- Givaudan Schweiz AG Fragrances S&T, Riechstoff-Forschung Kemptpark 50 8310 Kemptthal Schweiz
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| |
Collapse
|
13
|
Ouyang J, Bae H, Jordi S, Dao QM, Dossenbach S, Dehn S, Lingnau JB, Kanta De C, Kraft P, List B. The Smelling Principle of Vetiver Oil, Unveiled by Chemical Synthesis. Angew Chem Int Ed Engl 2021; 60:5666-5672. [PMID: 33315304 PMCID: PMC7986879 DOI: 10.1002/anie.202014609] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Vetiver oil, produced on a multiton‐scale from the roots of vetiver grass, is one of the finest and most popular perfumery materials, appearing in over a third of all fragrances. It is a complex mixture of hundreds of molecules and the specific odorant, responsible for its characteristic suave and sweet transparent, woody‐ambery smell, has remained a mystery until today. Herein, we prove by an eleven‐step chemical synthesis, employing a novel asymmetric organocatalytic Mukaiyama–Michael addition, that (+)‐2‐epi‐ziza‐6(13)en‐3‐one is the active smelling principle of vetiver oil. Its olfactory evaluation reveals a remarkable odor threshold of 29 picograms per liter air, responsible for the special sensuous aura it lends to perfumes and the quasi‐pheromone‐like effect it has on perfumers and consumers alike.
Collapse
Affiliation(s)
- Jie Ouyang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Hanyong Bae
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Samuel Jordi
- Givaudan Schweiz AG, Fragrances S&T, Ingredients Research, Kemptpark 50, 8310, Kemptthal, Switzerland
| | - Quang Minh Dao
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Sandro Dossenbach
- Givaudan Schweiz AG, Fragrances S&T, Ingredients Research, Kemptpark 50, 8310, Kemptthal, Switzerland
| | - Stefanie Dehn
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Julia B Lingnau
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Chandra Kanta De
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Philip Kraft
- Givaudan Schweiz AG, Fragrances S&T, Ingredients Research, Kemptpark 50, 8310, Kemptthal, Switzerland
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
14
|
Lu W, Li J, Lu Y, Zha Z, Wang Z. Copper‐Catalyzed Enantioselective Mukaiyama Aldol Reaction of Silyl Enol Ethers with Isatin‐Derived Oxindolyl β,γ‐Unsaturated α‐Keto Esters. ChemistrySelect 2021. [DOI: 10.1002/slct.202004823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Wenjing Lu
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials Science University of Science and Technology of China Hefei 230026 P. R. China
| | - Jindong Li
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials Science University of Science and Technology of China Hefei 230026 P. R. China
| | - Yangmian Lu
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials Science University of Science and Technology of China Hefei 230026 P. R. China
| | - Zhenggen Zha
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials Science University of Science and Technology of China Hefei 230026 P. R. China
| | - Zhiyong Wang
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials Science University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
15
|
Abstract
AbstractThis review updates the field of enantioselective indium-catalyzed transformations of all types since 2012. It shows that asymmetric indium catalysis, that suits the growing demand for greener processes, offers a real opportunity to replace toxic metals in the near future.1 Introduction2 Allylations, Propargylations, and Allenylations of Carbonyl Compounds and Derivatives2.1 Allylations2.2 Propargylations and Allenylations3 Cycloadditions3.1 Hetero-Diels–Alder Cycloadditions3.2 1,3-Dipolar Cycloadditions4 Miscellaneous Reactions5 Domino and Tandem Reactions6 Conclusion
Collapse
|
16
|
Xin HL, Pang B, Choi J, Akkad W, Morimoto H, Ohshima T. C-C Bond Cleavage of Unactivated 2-Acylimidazoles. J Org Chem 2020; 85:11592-11606. [PMID: 32819091 DOI: 10.1021/acs.joc.0c01458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
2-Acylimidazoles are widely used as post-transformable carboxylic acid equivalents in chemoselective and enantioselective reactions. Their transformations, however, require pretreatment with highly reactive, toxic methylating reagents to facilitate C-C bond cleavage. Here, we demonstrate that such pretreatment can be avoided and the C-C bond cleaved under neutral conditions without the use of additional reagents or catalysts. The scope of the reaction, including the use of products reported in the literature as substrates, and some mechanistic insights are described.
Collapse
Affiliation(s)
- Hai-Long Xin
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Bo Pang
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jeesoo Choi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Walaa Akkad
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroyuki Morimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
17
|
Duchemin N, Cattoen M, Gayraud O, Anselmi S, Siddiq B, Buccafusca R, Daumas M, Ferey V, Smietana M, Arseniyadis S. Direct Access to Highly Enantioenriched α-Branched Acrylonitriles through a One-Pot Sequential Asymmetric Michael Addition/Retro-Dieckmann/Retro-Michael Fragmentation Cascade. Org Lett 2020; 22:5995-6000. [PMID: 32790425 DOI: 10.1021/acs.orglett.0c02079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A highly enantioselective synthesis of α-branched acrylonitriles is reported featuring a one-pot sequential asymmetric Michael addition/retro-Dieckmann/retro-Michael fragmentation cascade. The method, which relies on a solid, bench-stable, and commercially available acrylonitrile surrogate, is practical, scalable, and highly versatile and provides a direct access to a wide range of enantioenriched nitrile-containing building blocks. Most importantly, the method offers a new tool to incorporate an acrylonitrile moiety in an asymmetric fashion.
Collapse
Affiliation(s)
- Nicolas Duchemin
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, U.K
| | - Martin Cattoen
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, U.K
| | - Oscar Gayraud
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, U.K
| | - Silvia Anselmi
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, U.K
| | - Bilal Siddiq
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, U.K
| | - Roberto Buccafusca
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, U.K
| | - Marc Daumas
- Sanofi Chimie, Route d'Avignon, 30390 Aramon, France
| | - Vincent Ferey
- Sanofi R&D, 371 rue du Professeur Blayac, 34080 Montpellier, France
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Stellios Arseniyadis
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, U.K
| |
Collapse
|
18
|
Jha RK, Rout S, Joshi H, Das A, Singh VK. An enantioselective sulfa-Michael addition of alkyl thiols to α,β-unsaturated 2-acyl imidazoles catalyzed by a bifunctional squaramide. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Zheng J, Meng Z, Lu D, Zhao D, Chen Q, Yang W. Michael Addition Reactions of Highly Basic Enolates for the Formation of 2‐(Tosylamino)Dihydrochalcones. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jing Zheng
- School of Resources Environmental and Chemical EngineeringNanChang University NanChang 330031 China
| | - Zhongrong Meng
- College of ChemistryNanChang University NanChang 330031 China
| | - Doudou Lu
- School of Resources Environmental and Chemical EngineeringNanChang University NanChang 330031 China
| | - Dongxin Zhao
- School of Resources Environmental and Chemical EngineeringNanChang University NanChang 330031 China
| | - Qinfang Chen
- School of Resources Environmental and Chemical EngineeringNanChang University NanChang 330031 China
| | - Weiran Yang
- School of Resources Environmental and Chemical EngineeringNanChang University NanChang 330031 China
| |
Collapse
|
20
|
Miyazaki A, Hatanaka M. The Origins of the Stereoselectivity and Enantioswitch in the Rare‐Earth‐Catalyzed Michael Addition: A Computational Study. ChemCatChem 2019. [DOI: 10.1002/cctc.201900555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Aya Miyazaki
- Graduate School of Material ScienceNara Institute of Science and Technology 8916-5, Takayamacho, Ikoma, Nara 630-0192 Japan
| | - Miho Hatanaka
- Graduate School of Material ScienceNara Institute of Science and Technology 8916-5, Takayamacho, Ikoma, Nara 630-0192 Japan
- Institute for Research Initiatives, Division for Research Strategy, and Data Science CenterNara Institute of Science and Technology 8916-5, Takayamacho, Ikoma, Nara 630-0192 Japan
- PRESTO Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 Japan
| |
Collapse
|
21
|
Cao W, Feng X, Liu X. Reversal of enantioselectivity in chiral metal complex-catalyzed asymmetric reactions. Org Biomol Chem 2019; 17:6538-6550. [PMID: 31219126 DOI: 10.1039/c9ob01027k] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Asymmetric catalysis represents an efficient approach to prepare optically active compounds. Commonly, both enantiomers of a chiral catalyst are used to synthesize two enantiomers of a chiral compound, however, it is quite difficult to obtain the catalysts with opposite configurations in most cases. Thus, chemists pay much attention to look for new strategies. Enantiodivergent synthesis demonstrates cost effectiveness and practicability to solve this issue by tuning the reaction parameters with the use of ligands derived from a single chiral source. In 2003 and 2008, two reviews have commendably summarized the enantiodivergent reactions, and some representative examples were illustrated. In this review, reversal of enantioselectivity in metal complex-mediated asymmetric catalysis from 2008 to present was updated. Several factors of delivering enantiodivergence are introduced, including metal salts, ligands, additives, solvents, temperature and so on.
Collapse
Affiliation(s)
- Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
22
|
Lauberteaux J, Pichon D, Baslé O, Mauduit M, Marcia de Figueiredo R, Campagne J. Acyl‐Imidazoles: A Privileged Ester Surrogate for Enantioselective Synthesis. ChemCatChem 2019. [DOI: 10.1002/cctc.201900754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jimmy Lauberteaux
- ICGM – UMR 5253Univ Montpellier, CNRS, ENSCM 240 Avenue du Professeur Emile Jeanbrau 34296 Montpellier Cedex 5 France
| | - Delphine Pichon
- Univ RennesEcole Nationale Supérieure de Chimie de Rennes CNRS, ISCR UMR 6226 11 Allée de Beaulieu CS 50837, 35708 Rennes Cedex 7 France
| | - Olivier Baslé
- Laboratoire de Chimie de Coordination, CNRS, UPR 8241 205 Route de Narbonne 31077 Toulouse Cedex 4 France
| | - Marc Mauduit
- Univ RennesEcole Nationale Supérieure de Chimie de Rennes CNRS, ISCR UMR 6226 11 Allée de Beaulieu CS 50837, 35708 Rennes Cedex 7 France
| | - Renata Marcia de Figueiredo
- ICGM – UMR 5253Univ Montpellier, CNRS, ENSCM 240 Avenue du Professeur Emile Jeanbrau 34296 Montpellier Cedex 5 France
| | - Jean‐Marc Campagne
- ICGM – UMR 5253Univ Montpellier, CNRS, ENSCM 240 Avenue du Professeur Emile Jeanbrau 34296 Montpellier Cedex 5 France
| |
Collapse
|
23
|
Zhang H, Li S, Kang Q, Du Y. Chiral-at-metal rhodium(iii) complex catalyzed enantioselective synthesis of C2-substituted benzofuran derivatives. Org Chem Front 2019. [DOI: 10.1039/c9qo01022j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An enantioselective C2-nucleophilic functionalization of 3-aminobenzofurans has been realized under catalysis of chiral rhodium(iii) complexes, affording a large array of C2-substituted benzofuran derivatives in high yields and enantioselectivities.
Collapse
Affiliation(s)
- Haoran Zhang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| | - Shiwu Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| | - Qiang Kang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| | - Yu Du
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| |
Collapse
|