1
|
Tavassoli AM, Zolfigol MA, Yarie M. Application of new multi-H-bond catalyst for the preparation of substituted pyridines via a cooperative vinylogous anomeric-based oxidation. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
2
|
Yang M, Liu T, Gong Y, Ai QW, Zhao YL. Rhodium-catalyzed coupling-cyclization of o-alkynyl/propargyl arylazides or o-azidoaryl acetylenic ketones with arylisocyanides: synthesis of 6 H-indolo[2,3- b]quinolines, dibenzonaphthyridones and dihydrodibenzo[ b, g] [1,8]-naphthyridines. Org Chem Front 2022. [DOI: 10.1039/d2qo00503d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The developed rhodium-catalyzed coupling-cyclization provides a new strategy for the assembly of 6H-indolo[2,3-b]quinolines, dibenzonaphthyridones and dihydrodibenzo[b,g] [1,8]-naphthyridines.
Collapse
Affiliation(s)
- Ming Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Tao Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yue Gong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qing-Wen Ai
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
3
|
Bandyopadhyay D, Thirupathi A, Radhakrishnan D, Panigrahi A, Peruncheralathan S. Triflic acid-mediated N-heteroannulation of β-anilino-β-(methylthio)acrylonitriles: a facile synthesis of 4-amino-2-(methylthio)quinolines. Org Biomol Chem 2021; 19:8544-8553. [PMID: 34550145 DOI: 10.1039/d1ob01151k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various functionalised 4-amino-2-(methylthio)quinolines are synthesised through triflic acid-mediated N-heteroannulation of α-functionalized-β-anilino-β-(methylthio)acrylonitriles for the first time. The N-heteroannulation process is highly chemoselective and has mild reaction conditions. However, this process fails in the absence of the β-methylthio group in the acrylonitriles. In addition, a new double N-heteroannulation process is demonstrated to synthesise indolo[3,2-c]quinolines from non-heterocyclic precursors. Natural product isocryptolepine is synthesised in four steps from an acyclic precursor.
Collapse
Affiliation(s)
- Debashruti Bandyopadhyay
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatani, Khurda-752050, Odisha, India.
| | - Annaram Thirupathi
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatani, Khurda-752050, Odisha, India.
| | - Divya Radhakrishnan
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatani, Khurda-752050, Odisha, India.
| | - Adyasha Panigrahi
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatani, Khurda-752050, Odisha, India.
| | - S Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatani, Khurda-752050, Odisha, India.
| |
Collapse
|
4
|
Bhattacharya A, Thirupathi A, Natarajan P, Peruncheralathan S. Chemoselective Ullmann Reaction of α-Trisubstituted Thioamides: Synthesis of Novel 2-Iminobenzothiolanes. ACS OMEGA 2021; 6:21169-21180. [PMID: 34423225 PMCID: PMC8375098 DOI: 10.1021/acsomega.1c03410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
New classes of unexplored benzo[b]thiolanes are synthesized from trisubstituted thioamides through copper-catalyzed intramolecular S-arylation of thioamides for the first time. This method provides good to excellent yields with fully controlled chemoselectivity. Unusually, iminobenzo[b]thiolanes are very stable under mild acidic conditions. A plausible mechanism is proposed for the chemoselective S-arylation process.
Collapse
|
5
|
Chandra P, Choudhary N, Lahiri GK, Maiti D, Mobin SM. Copper Mediated Chemo‐ and Stereoselective Cyanation Reactions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Prakash Chandra
- School of Technology Pandit Deendayal Petroleum University Gandhinagar Gujarat 382007 India
| | - Neha Choudhary
- Department of Chemistry Indian Institute of Technology, Indore Khandwa Road Indore Simrol 453552 India
| | - Goutam K. Lahiri
- Department of Chemistry Indian Institute of Technology Bombay Mumbai Powai 400076 India
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay Mumbai Powai 400076 India
| | - Shaikh M. Mobin
- Department of Chemistry Indian Institute of Technology, Indore Khandwa Road Indore Simrol 453552 India
- Department of Metallurgy Engineering and Materials Science (MEMS) Indian Institute of Technology Indore Khandwa Road Indore Simrol 453552 India
- Department of Biosciences and Bio-Medical Engineering (BSBE) Indian Institute of Technology, Indore Khandwa Road Indore Simrol 453552 India
| |
Collapse
|
6
|
Kumar Mehra M, Malik M, Kumar B, Kumar D. Chemoselective Cu-catalyzed synthesis of diverse N-arylindole carboxamides, β-oxo amides and N-arylindole-3-carbonitriles using diaryliodonium salts. Org Biomol Chem 2021; 19:1109-1114. [PMID: 33434249 DOI: 10.1039/d0ob02247k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemoselective copper-catalyzed synthesis of diverse N-arylindole-3-carboxamides, β-oxo amides and N-arylindole-3-carbonitriles from readily accessible indole-3-carbonitriles, α-cyano ketones and diaryliodonium salts has been developed. Diverse N-arylindole-3-carboxamides and β-oxo amides were successfully achieved in high yields under copper-catalyzed neutral reaction conditions, and the addition of an organic base (DIPEA) resulted in a completely different selectivity pattern to produce N-arylindole-3-carbonitriles. Moreover, the importance of the developed methodology was realized by the synthesis of indoloquinolones and N-((1H-indol-3-yl)methyl)aniline and by a single-step gram-scale synthesis of the naturally occurring cephalandole A analogue.
Collapse
Affiliation(s)
- Manish Kumar Mehra
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Monika Malik
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Bintu Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| |
Collapse
|
7
|
Chatterjee A, Murmu C, Peruncheralathan S. Copper-catalysed N-arylation of 5-aminopyrazoles: a simple route to pyrazolo[3,4- b]indoles. Org Biomol Chem 2020; 18:6571-6581. [PMID: 32797128 DOI: 10.1039/d0ob00812e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper-catalysed intramolecular N-arylation of 5-aminopyrazoles is demonstrated for the first time. Highly substituted pyrazolo[3,4-b]indoles are synthesized. In particular, the indole core is decorated with halogens and alkyl and methoxy groups. Furthermore, a selective N-arylation of unsymmetrical diaryl bromide containing pyrazoles is exemplified, resulting in valuable pyrazolo[1,5-a]benzimidazoles.
Collapse
Affiliation(s)
- Arpita Chatterjee
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatni, Khurda - 752050, Odisha, India.
| | - Chudamani Murmu
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatni, Khurda - 752050, Odisha, India.
| | - S Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatni, Khurda - 752050, Odisha, India.
| |
Collapse
|
8
|
Xiao J, Xu G, Wang L, Li P, Zhang W, Ma N, Tao M. Polyacrylonitrile fiber with strongly acidic electrostatic microenvironment: Highly efficient and recyclable heterogeneous catalyst for the synthesis of heterocyclic compounds. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Gore BS, Lee CC, Lee J, Wang J. Copper‐Catalyzed Synthesis of Substituted 4‐Quinolones using Water as a Benign Reaction Media: Application for the Construction of Oxolinic Acid and BQCA. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900286] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Babasaheb Sopan Gore
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Rd, Sanmin district Kaohsiung City 807 Taiwan
| | - Chein Chung Lee
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Rd, Sanmin district Kaohsiung City 807 Taiwan
| | - Jessica Lee
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Rd, Sanmin district Kaohsiung City 807 Taiwan
| | - Jeh‐Jeng Wang
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Rd, Sanmin district Kaohsiung City 807 Taiwan
- Department of Medical ResearchKaohsiung Medical University Hospital No. 100, Tzyou 1st Rd, Sanmin District Kaohsiung City 807 Taiwan
| |
Collapse
|
10
|
Wang L, Qi C, Guo T, Jiang H. Direct Access to α-Oxoketene Aminals via Copper-Catalyzed Formal Oxyaminalization of Alkenes under Mild Conditions. Org Lett 2019; 21:2223-2226. [DOI: 10.1021/acs.orglett.9b00518] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lu Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P.R. China
| | - Tianzuo Guo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| |
Collapse
|
11
|
Bugaenko DI, Karchava AV, Yurovskaya MA. Synthesis of indoles: recent advances. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4844] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Bugaenko DI, Dubrovina AA, Yurovskaya MA, Karchava AV. Synthesis of Indoles via Electron-Catalyzed Intramolecular C-N Bond Formation. Org Lett 2018; 20:7358-7362. [PMID: 30431287 DOI: 10.1021/acs.orglett.8b02784] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new protocol for the preparation of N-substituted indole-3-carboxylates has been developed. The key C-N bond formation occurs under transition-metal-free conditions employing a t-BuOK/DMF system without special initiators or additives. Across a number of substrates, indoles were afforded in yields higher or comparable to those obtained under transition-metal-catalyzed conditions. While demonstrating high functional group tolerance, new conditions are particularly attractive for manufacturing halogenated indoles that cannot be made in a pure form using other metal-based catalytic methods.
Collapse
Affiliation(s)
- Dmitry I Bugaenko
- Department of Chemistry , Moscow State University , Moscow 119234 , Russia
| | | | | | | |
Collapse
|