1
|
Tang SA, Fults A, Boyd SR, Gattu N, Tran KA, Fan J, MacKenzie KR, Palzkill T, Young DW, Chamakuri S. Expanding Complex Morpholines Using Systematic Chemical Diversity. Org Lett 2024; 26:3493-3497. [PMID: 38506470 DOI: 10.1021/acs.orglett.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The morpholine heterocycle is a structural unit found in many bioactive compounds and FDA-approved drugs, but the generation of more complex C-functionalized morpholine derivatives remains considerably underexplored. Using systematic chemical diversity (SCD), a concept that guides the expansion of saturated drug-like scaffolds through regiochemical and stereochemical variation, we describe the synthesis of a collection of methyl-substituted morpholine acetic acid esters starting from enantiomerically pure amino acids and amino alcohols. In total, 24 diverse substituted morpholines were produced that vary systematically in regiochemistry and stereochemistry (relative and absolute). These diverse C-substituted morpholines can be directly applied in fragment screening or incorporated as building blocks in medicinal chemistry and library synthesis.
Collapse
Affiliation(s)
- Sunny Ann Tang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Afton Fults
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Shelton R Boyd
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Nikhil Gattu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Kevin A Tran
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Jiayi Fan
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Kevin R MacKenzie
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Timothy Palzkill
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Damian W Young
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Srinivas Chamakuri
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| |
Collapse
|
2
|
Viveki AB, Mansfield TM, Tran KA, Lenkeit E, MacKenzie KR, Young DW, Chamakuri S. Heterocyclic Merging of Stereochemically Diverse Chiral Piperazines and Morpholines with Indazoles. Chemistry 2023; 29:e202301888. [PMID: 37462979 PMCID: PMC10885319 DOI: 10.1002/chem.202301888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 08/31/2023]
Abstract
We report a heterocyclic merging approach to construct novel indazolo-piperazines and indazolo-morpholines. Starting from chiral diamines and amino alcohols, novel regiochemically (1,3 and 1,4) and stereochemically diverse (relative and absolute) cohorts of indazolo-piperazines and indazolo-morpholines were obtained within six or seven steps. The key transformations involved are a Smiles rearrangement to generate the indazole core structure and a late-stage Michael addition to build the piperazine and morpholine heterocycles. We further explored additional vector diversity by incorporating substitutions on the indazole aromatic ring, generating a total of 20 unique, enantiomerically pure heterocyclic scaffolds.
Collapse
Affiliation(s)
- Amol B Viveki
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Timothy M Mansfield
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Kevin A Tran
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Evan Lenkeit
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Kevin R MacKenzie
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Damian W Young
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Srinivas Chamakuri
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
3
|
Brodzka A, Koszelewski D, Ostaszewski R. Simultaneous Enantiodivergent Synthesis of Diverse Lactones and Lactams via Sequential One-Pot Enzymatic Kinetic Resolution-Ring-Closing Metathesis Reactions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227696. [PMID: 36431796 PMCID: PMC9698981 DOI: 10.3390/molecules27227696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
One of the goals of diversity-oriented synthesis is to achieve the structural diversity of obtained compounds. As most biologically active compounds are chiral, it is important to develop enantioselective methods of their synthesis. The application of kinetic resolution in DOS is problematic because of low efficiency (max. 50% yield) and many purification steps. The further derivatization of kinetic resolution products in DOS leads to the formation of a narrow library of compounds of the same stereochemistry. To overcome these limitations, we present a new concept in which the kinetic resolution is combined, the subsequent reaction of which in a one-pot protocol leads to the simultaneous formation of two skeletally and enantiomerically diverse platform molecules for DOS. Their further derivatization can gain access to a double-sized library of products in respect to a classical approach. The validity of our concept was evidenced in enzymatic kinetic resolution followed by a ring-closing metathesis cascade. From racemic carboxylic acid ester, a simultaneous formation of enantiopure lactones and lactams was achieved. These compounds are important building blocks in organic and medicinal chemistry and until now were synthesized in separate procedures.
Collapse
|
4
|
A Concise Synthetic Method for Constructing 3-Substituted Piperazine-2-Acetic Acid Esters from 1,2-Diamines. Molecules 2022; 27:molecules27113419. [PMID: 35684357 PMCID: PMC9182393 DOI: 10.3390/molecules27113419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
We report a short synthetic route for synthesizing 2,3-substituted piperazine acetic acid esters. Optically pure amino acids were efficiently converted into 1,2-diamines that could be utilized to deliver the title 2,3-substituted piperazines in five steps with a high enantiomeric purity. The novel route facilitated, for the first time, the synthesis of 3-phenyl substituted-2-piperazine acetic acid esters that were difficult to achieve using other methods; however, in this case, the products underwent racemization.
Collapse
|
5
|
Klein HF, Hamilton DJ, J. P. de Esch I, Wijtmans M, O'Brien P. Escape from planarity in fragment-based drug discovery: a synthetic strategy analysis of synthetic 3D fragment libraries. Drug Discov Today 2022; 27:2484-2496. [DOI: 10.1016/j.drudis.2022.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
|
6
|
Chamakuri S, Chung MK, Samuel ELG, Tran KA, Chen YC, Nyshadham P, Santini C, Matzuk MM, Young DW. Design and construction of a stereochemically diverse piperazine-based DNA-encoded chemical library. Bioorg Med Chem 2021; 48:116387. [PMID: 34571488 DOI: 10.1016/j.bmc.2021.116387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/08/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
Here we report the successful construction of a novel, stereochemically diverse DNA-Encoded Chemical Library (DECL) by utilizing 24 enantiomerically pure trifunctional 2, 6- di-substituted piperazines as central cores. We introduce the concept of positional diversity by placing the DNA attachment at either of two possible sites on the piperazine scaffold. Using a wide range of building blocks, a diverse library of 77 million compounds was produced. Cheminformatic analysis demonstrates that this library occupies a wide swath of chemical space, and that the piperazine scaffolds confers different shape diversity compared to the commonly used triazine core.
Collapse
Affiliation(s)
- Srinivas Chamakuri
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States.
| | - Mee-Kyung Chung
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Errol L G Samuel
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Kevin A Tran
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Ying-Chu Chen
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Pranavanand Nyshadham
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Conrad Santini
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Martin M Matzuk
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Damian W Young
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, United States; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
7
|
Silvestri IP, Colbon PJJ. The Growing Importance of Chirality in 3D Chemical Space Exploration and Modern Drug Discovery Approaches for Hit-ID: Topical Innovations. ACS Med Chem Lett 2021; 12:1220-1229. [PMID: 34413951 PMCID: PMC8366003 DOI: 10.1021/acsmedchemlett.1c00251] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
Modern-day drug discovery is now blessed with a wide range of high-throughput hit identification (hit-ID) strategies that have been successfully validated in recent years, with particular success coming from high-throughput screening, fragment-based lead discovery, and DNA-encoded library screening. As screening efficiency and throughput increases, this enables the viable exploration of increasingly complex three-dimensional (3D) chemical structure space, with a realistic chance of identifying highly specific hit ligands with increased target specificity and reduced attrition rates in preclinical and clinical development. This minireview will explore the impact of an improved design of multifunctionalized, sp3-rich, stereodefined scaffolds on the (virtual) exploration of 3D chemical space and the specific requirements for different hit-ID technologies.
Collapse
Affiliation(s)
- Ilaria Proietti Silvestri
- Department of Chemistry University
of Liverpool, Liverpool ChiroChem, Ltd., Crown Street, Liverpool L69 7ZD, United
Kingdom
| | - Paul J. J. Colbon
- Department of Chemistry University
of Liverpool, Liverpool ChiroChem, Ltd., Crown Street, Liverpool L69 7ZD, United
Kingdom
| |
Collapse
|
8
|
Hamilton DJ, Dekker T, Klein HF, Janssen GV, Wijtmans M, O'Brien P, de Esch IJP. Escape from planarity in fragment-based drug discovery: A physicochemical and 3D property analysis of synthetic 3D fragment libraries. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 38:77-90. [PMID: 34895643 DOI: 10.1016/j.ddtec.2021.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/30/2021] [Accepted: 05/19/2021] [Indexed: 06/14/2023]
Abstract
Fragment-based drug discovery (FBDD) has grown into a well-established approach in the pursuit of new therapeutics. Key to the success of FBDD is the low molecular complexity of the initial hits and this has resulted in fragment libraries that mainly contain compounds with a two-dimensional (2D) shape. In an effort to increase the chemical diversity and explore the impact of increased molecular complexity on the hit rate of fragment library screening, several academic and industrial groups have designed and synthesised novel fragments with a three-dimensional (3D) shape. This review provides an overview of 25 synthetic 3D fragment libraries from the recent literature. We calculate and compare physicochemical properties and descriptors that are typically used to measure molecular three-dimensionality such as fraction sp3 (Fsp3), plane of best fit (PBF) scores and principal moment of inertia (PMI) plots. Although the libraries vary widely in structure and properties, some key common features can be identified which may have utility in designing the next generation of 3D fragment libraries.
Collapse
Affiliation(s)
- David J Hamilton
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Tom Dekker
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Hanna F Klein
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Guido V Janssen
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Maikel Wijtmans
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Peter O'Brien
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Gerry CJ, Schreiber SL. Recent achievements and current trajectories of diversity-oriented synthesis. Curr Opin Chem Biol 2020; 56:1-9. [DOI: 10.1016/j.cbpa.2019.08.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022]
|
10
|
Magriotis PA. Recent progress toward the asymmetric synthesis of carbon-substituted piperazine pharmacophores and oxidative related heterocycles. RSC Med Chem 2020; 11:745-759. [PMID: 33479672 PMCID: PMC7509752 DOI: 10.1039/d0md00053a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/27/2020] [Indexed: 01/23/2023] Open
Abstract
The piperazine drugs are mostly N-substituted compared to only a few C-substituted drugs. To explore this unknown chemical space, asymmetric syntheses of C-substituted piperazines is the subject of this review.
The important requirement for approval of a new drug, in case it happens to be chiral, is that both enantiomers of the drug should be studied in detail, which has led synthetic organic and medicinal chemists to focus their attention on the development of new methods for asymmetric synthesis especially of relevant saturated N-heterocycles. On the other hand, the piperazine ring, besides defining a major class of saturated N-heterocycles, has been classified as a privileged structure in medicinal chemistry, since it is more than frequently found in biologically active compounds including several marketed blockbuster drugs such as Glivec (imatinib) and Viagra (sildenafil). Indeed, 13 of the 200 best-selling small molecule drugs in 2012 contained a piperazine ring. Nevertheless, analysis of the piperazine substitution pattern reveals a lack of structural diversity, with almost every single drug in this category (83%) containing a substituent at both the N1- and N4-positions compared to a few drugs having a substituent at any other position (C2, C3, C5, and C6). Significant chemical space that is closely related to that known to be biologically relevant, therefore, remains unexplored. In order to explore this chemical space, efficient and asymmetric syntheses of carbon-substituted piperazines and related heterocycles must be designed and developed. Initial, recent efforts toward the implementation of this particular target are in fact the subject of this review.
Collapse
Affiliation(s)
- Plato A Magriotis
- Department of Pharmacy , Laboratory of Medicinal Chemistry , University of Patras , Rio26504 , Greece .
| |
Collapse
|
11
|
Chamakuri S, Shah MM, Yang DCH, Santini C, Young DW. Practical and scalable synthesis of orthogonally protected-2-substituted chiral piperazines. Org Biomol Chem 2020; 18:8844-8849. [PMID: 33118584 DOI: 10.1039/d0ob01713b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthetic route to orthogonally protected, enantiomerically pure 2-substituted piperazines is described. Starting from α-amino acids, within four steps chiral 2-substituted piperazines are obtained. The key transformation involves an aza-Michael addition between an orthogonally bis-protected chiral 1,2-diamine and the in situ generated vinyl diphenyl sulfonium salt derived from 2-bromoethyl-diphenylsulfonium triflate. Further validation using different protecting groups as well as synthesis on multigram scale was performed. The method was also applied to the construction of chiral 1,4-diazepanes and 1,4-diazocanes. Additionally, the method was utilized in a formal synthesis of chiral mirtazapine.
Collapse
Affiliation(s)
- Srinivas Chamakuri
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
12
|
Dickson P, Kodadek T. Chemical composition of DNA-encoded libraries, past present and future. Org Biomol Chem 2019; 17:4676-4688. [PMID: 31017595 PMCID: PMC6520149 DOI: 10.1039/c9ob00581a] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA-encoded libraries represent an exciting and powerful modality for high-throughput screening. In this article, we highlight recent important advances in this field and also suggest some important directions that would make the technology even more powerful.
Collapse
Affiliation(s)
- Paige Dickson
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | | |
Collapse
|
13
|
Jain P, Raji IO, Chamakuri S, MacKenzie KR, Ebright BT, Santini C, Young DW. Synthesis of Enantiomerically Pure 5-Substituted Piperazine-2-Acetic Acid Esters as Intermediates for Library Production. J Org Chem 2019; 84:6040-6064. [DOI: 10.1021/acs.joc.9b00148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Prashi Jain
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Idris O. Raji
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Srinivas Chamakuri
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Kevin R. MacKenzie
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Brandon T. Ebright
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Conrad Santini
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Damian W. Young
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| |
Collapse
|
14
|
Sun AW, Hess SN, Stoltz BM. Enantioselective synthesis of gem-disubstituted N-Boc diazaheterocycles via decarboxylative asymmetric allylic alkylation. Chem Sci 2019; 10:788-792. [PMID: 30774872 PMCID: PMC6345351 DOI: 10.1039/c8sc03967d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/29/2018] [Indexed: 11/28/2022] Open
Abstract
An enantioselective synthesis of diverse N4-Boc-protected α,α-disubstituted piperazin-2-ones using the palladium-catalyzed decarboxylative allylic alkylation reaction has been achieved. Using a chiral Pd-catalyst derived from an electron deficient PHOX ligand, chiral piperazinones are synthesized in high yields and enantioselectivity. The chiral piperazinone products can be deprotected and reduced to valuable gem-disubstituted piperazines. This reaction is further extended to enable the enantioselective synthesis of α,α-disubstituted tetrahydropyrimidin-2-ones, which are hydrolyzed into corresponding chiral β2,2-amino acids.
Collapse
Affiliation(s)
- Alexander W Sun
- Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering , Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , USA .
| | - Stephan N Hess
- Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering , Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , USA .
| | - Brian M Stoltz
- Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering , Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , USA .
| |
Collapse
|
15
|
Chauhan N, Pradhan S, Ghorai MK. Stereospecific Synthesis of Highly Substituted Piperazines via an One-Pot Three Component Ring-Opening Cyclization from N-Activated Aziridines, Anilines, and Propargyl Carbonates. J Org Chem 2018; 84:1757-1765. [DOI: 10.1021/acs.joc.8b02259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Navya Chauhan
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Sajan Pradhan
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Manas K Ghorai
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
16
|
Reddy Guduru SK, Chamakuri S, Raji IO, MacKenzie KR, Santini C, Young DW. Synthesis of Enantiomerically Pure 3-Substituted Piperazine-2-acetic Acid Esters as Intermediates for Library Production. J Org Chem 2018; 83:11777-11793. [DOI: 10.1021/acs.joc.8b01708] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shiva Krishna Reddy Guduru
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Srinivas Chamakuri
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Idris O. Raji
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Kevin R. MacKenzie
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Conrad Santini
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Damian W. Young
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| |
Collapse
|