1
|
Chen S, Ji YS, Choi Y, Youn SW. One-Pot Three-Component Reaction for the Synthesis of 3,4-Dihydroquinazolines and Quinazolin-4(3 H)-ones. J Org Chem 2024; 89:6428-6443. [PMID: 38608000 DOI: 10.1021/acs.joc.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
A highly efficient and straightforward one-pot synthesis of diversely substituted 3,4-dihydroquinazolines and quinazolin-4(3H)-ones has been achieved through a domino three-component assembly reaction of arenediazonium salts, nitriles, and bifunctional aniline derivatives. This new protocol involves three C-N bond formations through the initial formation of N-arylnitrilium intermediates from arenediazonium salts and nitriles, followed by the sequential nucleophilic addition and cyclization reactions with bifunctional anilines, leading to such N-heterocyclic compounds of biological and pharmacological importance. This method offers a simple, expedient, and robust approach with the use of amenable and easily accessible reactants/reagents under metal-free mild conditions, good functional group tolerance, and high efficiency. The synthetic applications were also demonstrated by derivatization of the products obtained from these processes and syntheses of a diverse range of valuable polycyclic N-heterocycles.
Collapse
Affiliation(s)
- Shiwei Chen
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Yeong Shin Ji
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Yuri Choi
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - So Won Youn
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
2
|
Hong YC, Ye JL, Huang PQ. One-Pot Synthesis of α-Amino Bisphosphonates from Nitriles via Tf 2O/HC(OR) 3-Mediated Interrupted Ritter-Type Reaction. J Org Chem 2022; 87:9044-9055. [PMID: 35748643 DOI: 10.1021/acs.joc.2c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A versatile synthesis of α-amino bisphosphonates has been achieved through one-pot interrupted Ritter-type reaction under mild conditions. The reactive Ritter intermediate nitrilium is in situ generated by treatment of nitrile with readily accessible Tf2O/HC(OR1)3, which is trapped by phosphite ester to deliver the desired product. This protocol is efficient, scalable, and well compatible with a broad scope of substrates. In addition, plentiful characteristic JP-C couplings including unusual five-bond long-range 5JP-C and 3JP-C across quaternary carbon and hetero (N) atoms were observed in 13C NMR spectra.
Collapse
Affiliation(s)
- Ya-Cheng Hong
- Department of Chemical Biology and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jian-Liang Ye
- Department of Chemical Biology and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Pei-Qiang Huang
- Department of Chemical Biology and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
3
|
Taha I, Keshk EM, Khalil AGM, Fekri A. Benzocaine as a precursor of promising derivatives: synthesis, reactions, and biological activity. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01808-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Mo F, Qiu D, Zhang L, Wang J. Recent Development of Aryl Diazonium Chemistry for the Derivatization of Aromatic Compounds. Chem Rev 2021; 121:5741-5829. [DOI: 10.1021/acs.chemrev.0c01030] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Lei Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Ramanathan M, Wan J, Liu YH, Peng SM, Liu ST. Synthesis of 2-arylamino-3-cyanoquinolines via a cascade reaction through a nitrilium intermediate. Org Biomol Chem 2020; 18:975-982. [PMID: 31932827 DOI: 10.1039/c9ob02427a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new method for the preparation of 2-amino-3-cyanoquinolines from readily available aryldiazonium salts, 2-aminoarylketones, and malononitrile via a cascade reaction is reported. This one-pot approach involves the in situ generation of an N-arylnitrilium intermediate from the direct reaction of aryldiazonium salts and malononitrile, which undergoes intermolecular amination, Knoevenagel condensation, and then aromatization to yield the desired compound in moderate to good yields. This methodology features a quick assembly of C2 and C3 functionalized quinolines.
Collapse
Affiliation(s)
- Mani Ramanathan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| | - Jing Wan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| | - Shie-Ming Peng
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| | - Shiuh-Tzung Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
6
|
He D, Zhuang Z, Wang X, Li J, Li J, Wu W, Zhao Z, Jiang H, Tang BZ. Assembly of 1 H-isoindole derivatives by selective carbon-nitrogen triple bond activation: access to aggregation-induced emission fluorophores for lipid droplet imaging. Chem Sci 2019; 10:7076-7081. [PMID: 31588275 PMCID: PMC6677114 DOI: 10.1039/c9sc01035a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022] Open
Abstract
A method of selectively activating carbon–nitrogen triple bonds has been developed to access 1H-isoindole AIE fluorophores for lipid droplet imaging.
A novel strategy has been established to assemble a series of single (Z)- or (E)-1H-isoindole derivatives through selectively and sequentially activating carbon–nitrogen triple bonds in a multicomponent system containing various nucleophilic and electrophilic sites. The reaction provides efficient access to structurally unique fluorophores with aggregation-induced emission characteristics. These new fluorophores show fluorescence wavelengths and efficiencies that can be modulated and have excellent potential to specifically light up lipid droplets (LDs) in living cells with bright fluorescence, low cytotoxicity and better photostability than commercially available LD-specific dyes.
Collapse
Affiliation(s)
- Dandan He
- Key Laboratory of Functional Molecular Engineering of Guang Dong Province , School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , P. R. China . ;
| | - Zeyan Zhuang
- State Key Laboratory of Luminescent Materials and Devices , Center for Aggregation-Induced Emission , South China University of Technology , Guangzhou 510640 , China .
| | - Xu Wang
- Key Laboratory of Functional Molecular Engineering of Guang Dong Province , School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , P. R. China . ;
| | - Jiawei Li
- Key Laboratory of Functional Molecular Engineering of Guang Dong Province , School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , P. R. China . ;
| | - Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guang Dong Province , School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , P. R. China . ;
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guang Dong Province , School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , P. R. China . ; .,State Key Laboratory of Luminescent Materials and Devices , Center for Aggregation-Induced Emission , South China University of Technology , Guangzhou 510640 , China .
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices , Center for Aggregation-Induced Emission , South China University of Technology , Guangzhou 510640 , China .
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guang Dong Province , School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , P. R. China . ;
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices , Center for Aggregation-Induced Emission , South China University of Technology , Guangzhou 510640 , China . .,Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science & Technology , Kowloon , Hong Kong , China
| |
Collapse
|
7
|
Amin HIM, Raviola C, Amin AA, Mannucci B, Protti S, Fagnoni M. Hydro/Deutero Deamination of Arylazo Sulfones under Metal- and (Photo)Catalyst-Free Conditions. Molecules 2019; 24:E2164. [PMID: 31181774 PMCID: PMC6601019 DOI: 10.3390/molecules24112164] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 11/17/2022] Open
Abstract
Hydrodeaminated and monodeuterated aromatics were obtained via a visible-light driven reaction of arylazo sulfones. Deuteration occurs efficiently in deuterated media such as isopropanol-d8 or in THF-d8/water mixtures and exhibits a high tolerance to the nature and the position of the aromatic substituents.
Collapse
Affiliation(s)
- Hawraz I M Amin
- PhotoGreen Lab, Department of Chemistry, University of Pavia. Viale Taramelli 12, 27100 Pavia, Italy.
- Chemistry Department, College of Science, Salahaddin University-Erbil, Erbil 44001, Iraq.
| | - Carlotta Raviola
- PhotoGreen Lab, Department of Chemistry, University of Pavia. Viale Taramelli 12, 27100 Pavia, Italy.
| | - Ahmed A Amin
- Chemistry Department, College of Education, Salahaddin University-Erbil, Erbil 44001, Iraq.
| | - Barbara Mannucci
- Centro Grandi Strumenti (CGS), University of Pavia, V. Bassi 21, 27100 Pavia, Italy.
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia. Viale Taramelli 12, 27100 Pavia, Italy.
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia. Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
8
|
Ramanathan M, Wan J, Liu ST. Preparation of N-Arylquinazolinium Salts via a Cascade Approach. J Org Chem 2019; 84:7459-7467. [PMID: 31082227 DOI: 10.1021/acs.joc.9b00601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An easy manipulation method for the preparation of N-arylquinazolinium salts is described from readily available aryldiazonium salts, nitriles, and 2-aminoarylketones in a one-pot operation. This method relies on the in situ generation of the N-arylnitrilium intermediate from the reaction of aryldiazonium salt with nitrile, which undergoes amination/cascade cyclization/aromatization, leading to N-arylquinazolinium salts in excellent yields. Nucleophilic addition of alkoxide to these N-arylquinazolinium salts provides functionalized dihydro- N-arylquinazoline.
Collapse
Affiliation(s)
- Mani Ramanathan
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | - Jing Wan
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | - Shiuh-Tzung Liu
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| |
Collapse
|
9
|
Preparation of 4(3H)-quinazolinones from aryldiazonium salt, nitriles and 2-aminobenzoate via a cascade annulation. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Three component reaction of aryl diazonium salt with sulfonamide & actonitrile to synthesize N-sulfonyl amidine. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Ramanathan M, Liu ST. Preparation of Quinazolinoquinazolinones via a Cascade Approach. J Org Chem 2018; 83:14138-14145. [DOI: 10.1021/acs.joc.8b02239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mani Ramanathan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Shiuh-Tzung Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
12
|
Charaschanya M, Li K, Motiwala HF, Aubé J. An Interrupted Schmidt Reaction: C-C Bond Formation Arising from Nitrilium Ion Capture. Org Lett 2018; 20:6354-6358. [PMID: 30277406 DOI: 10.1021/acs.orglett.8b02531] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rerouting of the nitrilium ion formed in the Schmidt reaction of ketones and TMSN3 to encompass C-C bond formation with an electron-rich aromatic group is reported. Thus, when the reaction is carried out in HFIP using AlCl3 or AlBr3 as the promoter, imines, iminium ions, or enamide derivatives are obtained through one-pot procedures. The scope and possible mechanisms of these new transformations are considered.
Collapse
Affiliation(s)
- Manwika Charaschanya
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599-7363 , United States
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599-7363 , United States
| | - Hashim F Motiwala
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599-7363 , United States
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599-7363 , United States
| |
Collapse
|