1
|
Zhu YL, Long YL, Yang MY, Zhou Q, Zhao N, Ma XX, Chen J. Hydroxyl-Assisted and Co(III)-Catalyzed Redox-Neutral C-H Activation/Directing Group Migration of 2-Pyridones with Propargyl Alcohols: Synthesis of Tetrasubstituted Alkenes. J Org Chem 2024; 89:17281-17290. [PMID: 39527636 DOI: 10.1021/acs.joc.4c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This study provides a practical route to synthesize tetrasubstituted alkenes that involves Co(III)-catalyzed C-H bond activation and regioselective insertion of the alkyne, followed by chelation of the substrate hydroxyl to Co and migration of the pyridine group. Density functional theory studies revealed the origin of regioselectivity and elucidated the crucial role of the hydroxyl group for the migration of pyridine. The method can be conducted on a gram scale, is compatible with a wide range of substrates, and has a high functional group tolerance. To demonstrate its significance, the method was used for the late-stage modification of Fasudil. Furthermore, the synthetic significance of the method was demonstrated by the various derivatizations of the products, many of which exhibit intriguing fluorescence characteristics.
Collapse
Affiliation(s)
- Yue-Lu Zhu
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, P. R. China
| | - Yan-Lin Long
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, P. R. China
| | - Ming-Yang Yang
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, P. R. China
| | - Qi Zhou
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, P. R. China
| | - Na Zhao
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, P. R. China
| | - Xue-Xiang Ma
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, P. R. China
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jiao Chen
- College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
2
|
Liu Y, Qian T, Bai JF, Zheng J, Zhou Y, Jiang ZJ, Chen J, Gao Z. 2-Pyridone-Enhanced Mn-Catalysis for the Synthesis of ortho-Deuterated Aromatic Nitriles. Org Lett 2024; 26:10170-10175. [PMID: 39546448 DOI: 10.1021/acs.orglett.4c04061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
We herein present a method for the synthesis of ortho-deuterated aryl nitrile using Mn(CO)5Br as catalyst with CH3OD as deuteratium source, where the structure of aryl imidates is used for interconversion with a cyanide group. This method features a broad substrate range and excellent functional group tolerance, allowing late modification of various complex molecules with good yields and deuterium incorporation. Mechanistic studies suggest that 2-pyridone is crucial to the success of this chemistry, serving as an endogenous base that enhances the rate of hydrogen isotope exchange.
Collapse
Affiliation(s)
- Yanran Liu
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Tao Qian
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jian-Fei Bai
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Jinfeng Zheng
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - You Zhou
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Zhi-Jiang Jiang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Jia Chen
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Zhanghua Gao
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
- Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo 315100, People's Republic of China
| |
Collapse
|
3
|
Ojea V, Ruiz M. DLPNO-CCSD(T) and DFT study of the acetate-assisted C-H activation of benzaldimine at [RuCl 2( p-cymene)] 2: the relevance of ligand exchange processes at ruthenium(II) complexes in polar protic media. Dalton Trans 2024; 53:8662-8679. [PMID: 38695752 DOI: 10.1039/d4dt00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
To gain mechanistic insights into the acetate-assisted cyclometallations of arylimines promoted by [RuCl2(p-cymene)]2 in polar protic media, DFT geometry optimizations (with M06 and ωB97X-D3 functionals and the cc-pVDZ-PP[Ru] basis set) followed by DLPNO-CCSD(T)/CBS energy evaluations were performed using benzaldimine as a model substrate and methanol as the solvent (with CPCM or SMD models). The calculation results show that coordination of the imine to an acetate ruthenium precursor is followed by anion (chloride or acetate) dissociation as the rate-determining step of the process. H-Bonding of two explicit MeOH to the anion reduces the calculated activation energy to ca. 23 kcal mol-1, in good agreement with the experimental half-life at room temperature. Subsequent AMLA/CMD C-H activation of the intermediate cationic complexes is a faster, reversible process. Alternative reaction pathways involving neutral diacetate ruthenium complexes offer AMLA/CMD transition state structures of lower energy but are precluded due to higher energy barriers for the initial ligand exchange processes at ruthenium. Solvent assistance accelerates the final chloride/acetate exchange processes on the cycloruthenate intermediates, particularly when compression in the condensed phase is taken into consideration. The performance of six DFT functionals (with the aug-pVTZ-PP[Ru] basis set) was assessed using the DLPNO-CCSD(T)/CBS reference energies. Neutral diacetate ruthenium complexes were incorrectly predicted as being kinetically relevant when using hybrid DFT methods (PBE0-D3(BJ), M06-2X or ωB97M-V). Good agreement between the calculated barrier heights and our benchmark energy results was obtained by using double-hybrid DFT methods. PWPB95 with D3(BJ) or D4 dispersion energy corrections was found to be the most accurate (ΔG≠ MUE of ca. 1 kcal mol-1). This study may aid our understanding of and help with further experimental investigations of synthetically useful carboxylate-assisted C-H bond functionalizations involving (N,C)-cyclometallated (p-cymene)Ru(II) intermediate complexes in sustainable polar protic solvents.
Collapse
Affiliation(s)
- Vicente Ojea
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, E-15078 A Coruña, Spain.
| | - María Ruiz
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, E-15078 A Coruña, Spain.
| |
Collapse
|
4
|
Nagtilak PJ, Mane MV, Prasad S, Cavallo L, Tantillo DJ, Kapur M. Merging Rh-Catalyzed C-H Functionalization and Cascade Cyclization to Enable Propargylic Alcohols as Three-Carbon Synthons. Chemistry 2023; 29:e202203055. [PMID: 36197081 DOI: 10.1002/chem.202203055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 11/07/2022]
Abstract
Reported herein is a reactivity of propargyl alcohols as "Three-Carbon Synthons" in a Rh(III)-catalyzed C-H functionalization of acetanilides, leading to the synthesis of core structures of isocryptolepine, γ-carbolines, dihydrochromeno[2,3-b]indoles, and diindolylmethanes (DIM) derivatives. The transformation involves a rhodium(III)-catalyzed C-H functionalization and heteroannulation to yield indoles followed by a cascade cyclization with both external and internal nucleophiles to afford diverse products. The role of the hydroxy group, the key function of the silver additive, the origin of the reverse regioselectivity and the rate-determining step, are rationalized in conformity with the combination of experimental, noncovalent interaction analysis and DFT studies. This protocol is endowed with several salient features, including one-pot multistep cascade approach, exclusive regioselectivity, good functional group tolerance and synthesis of variety of molecular frameworks.
Collapse
Affiliation(s)
- Prajyot Jayadev Nagtilak
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Manoj V Mane
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnatak, 562112, India
| | - Supreeth Prasad
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
5
|
Sontakke GS, Ghosh C, Pal K, Volla CMR. Regioselective Dichotomy in Ru(II)-Catalyzed C-H Annulation of Aryl Pyrazolidinones with 1,3-Diynes. J Org Chem 2022; 87:14103-14114. [PMID: 36226324 DOI: 10.1021/acs.joc.2c01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we present a substrate-controlled regiodivergent strategy for the selective synthesis of C3 or C2-alkynylated indoles via ruthenium-catalyzed [3 + 2]-annulation of readily available pyrazolidinones and 1,3-diynes. Remarkably, C3-alkynylated indoles were obtained in good yields when 1,4-diarylbuta-1,3-diynes were employed as the coupling partners. On the other hand, dialkyl-1,3-diynes led to the selective formation of C2-alkynylated indoles. The key features of the strategy are the operationally simple conditions and external-oxidant-free, broad-scope, and substrate-switchable indole synthesis. Scale-up reactions and further transformations expanded the synthetic utility of the protocol.
Collapse
Affiliation(s)
- Geetanjali S Sontakke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chiranjit Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kuntal Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
6
|
Hu W, Yan L, Zuo Y, Kong S, Pu Y, Tang Q, Wang X, He X, Shang Y. Rhodium(III)‐Catalyzed Three‐Component Cascade Annulation for Modular Assembly of N‐Alkoxylated 3‐Arylisoindolin‐1‐ones with Tetrasubstituted Carbon Center. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | | | - Yue Pu
- Anhui Normal University CHINA
| | | | | | | | | |
Collapse
|
7
|
Mishra S, Nair SR, Baire B. Recent approaches for the synthesis of pyridines and (iso)quinolines using propargylic Alcohols. Org Biomol Chem 2022; 20:6037-6056. [PMID: 35678139 DOI: 10.1039/d2ob00587e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Propargylic alcohols are one of the readily available and highly explored building blocks in organic synthesis. They show distinct reactivities compared to simple alcohols and/or alkynes, and hence provide diverse possibilities to develop novel synthetic strategies for the construction of polycyclic systems, including heterocycles. The six-membered heterocycles, pyridines, quinolines, and isoquinolines, are very important privileged structures in medicinal chemistry and drug discovery due to their broad spectrum of biological activities. They are also part of vitamins, nucleic acids, pharmaceuticals, antibiotics, dyes, and agrochemicals. Many synthetic strategies have been developed for the rapid and efficient generation of these cyclic systems. One such strategy is employing the propargylic alcohols as reactants in the form of either a 3-carbon component or 2-carbon unit. Thus, in this review article, we aimed to summarize various approaches to pyridines, quinolines, and isoquinolines from propargylic alcohols. To the best of our knowledge, so far, no focused reviews have appeared on this topic in the literature. Due to the many reports available, we also restricted ourselves to the developments during the past 17 years, i.e., 2005-2021. We strongly believe that this review article provides comprehensive coverage of research articles on the title topic, and will be of great value for the organic synthetic community for further developments in this area of research.
Collapse
Affiliation(s)
- Surabhi Mishra
- Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| | - Sindoori R Nair
- Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| | - Beeraiah Baire
- Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
8
|
Kumar B, Babu JN, Chowhan LR. Sustainable Synthesis of Highly Diastereoselective & Fluorescent Active Spirooxindoles Catalyzed by Copper Oxide Nanoparticle Immobilized on Microcrystalline Cellulose. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bhupender Kumar
- School for Applied Material Sciences Central University of Gujarat, Sector 30 Gandhinagar Gujarat India
| | - J. Nagendra Babu
- Department of Chemistry School for Basic and Applied Sciences, Central University of Punjab, VPO Ghudda Bathinda Punjab India
| | - L. Raju Chowhan
- School for Applied Material Sciences Central University of Gujarat, Sector 30 Gandhinagar Gujarat India
| |
Collapse
|
9
|
Deng C, Jiang L, Yao J, Liang Q, Miao L, Li C, Miao M, Zhou H. Rhodium(III)-Catalyzed Sequential Cyclization of N-Boc Hydrazones with Propargylic Monofluoroalkynes via C-H Activation/C-F Cleavage for the Synthesis of Spiro[cyclobutane-1,9'-indeno[1,2- a]indenes]. J Org Chem 2022; 87:6105-6114. [PMID: 35471941 DOI: 10.1021/acs.joc.2c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An effective rhodium(III) catalysis for the construction of valuable tetracyclic compounds is described herein. This domino process involving the C-H activation/[3 + 2] annulation/intramolecular Friedel-Crafts reaction sequences of simple and readily available N-Boc hydrazones and propargylic monofluoroalkynes afforded fused tetracyclic spiro[cyclobutane-1,9'-indeno[1,2-a]indenes] in moderate to good yields, featuring three C-C bond formation. Moreover, control experiments indicated that the C-H activation might be involved in the rate-determining step.
Collapse
Affiliation(s)
- Cheng Deng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China.,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Lu Jiang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China.,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Jinzhong Yao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Qian Liang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Lin Miao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Changchang Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Maozhong Miao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Hongwei Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| |
Collapse
|
10
|
Shin S, Um K, Ko GH, Han GU, Kim D, Lee PH. Iridium(III)-Catalyzed Regioselective B(4)–H Allenylation of o-Carboranes by Ball Milling. Org Lett 2022; 24:3128-3133. [DOI: 10.1021/acs.orglett.2c00756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seohyun Shin
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyusik Um
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gi Hoon Ko
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gi Uk Han
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
11
|
Findlay MT, Domingo-Legarda P, McArthur G, Yen A, Larrosa I. Catalysis with cycloruthenated complexes. Chem Sci 2022; 13:3335-3362. [PMID: 35432864 PMCID: PMC8943884 DOI: 10.1039/d1sc06355c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/08/2022] [Indexed: 12/03/2022] Open
Abstract
Cycloruthenated complexes have been studied extensively over the last few decades. Many accounts of their synthesis, characterisation, and catalytic activity in a wide variety of transformations have been reported to date. Compared with their non-cyclometallated analogues, cycloruthenated complexes may display enhanced catalytic activities in known transformations or possess entirely new reactivity. In other instances, these complexes can be chiral, and capable of catalysing stereoselective reactions. In this review, we aim to highlight the catalytic applications of cycloruthenated complexes in organic synthesis, emphasising the recent advancements in this field. We discuss recent advances in the applications of cycloruthenated complexes in organic synthesis, comprising C–H activation, chiral-at-metal catalysis, Z-selective olefin metathesis, transfer hydrogenation, enantioselective cyclopropanations and cycloadditions.![]()
Collapse
Affiliation(s)
- Michael T Findlay
- School of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | | | - Gillian McArthur
- School of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Andy Yen
- School of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Igor Larrosa
- School of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
12
|
Zhao X, Ling Q, Cao G, Huo X, Zhao X, Su Y. Research Progress in the Cyclization Reactions with Propargyl Alcohols. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Wei Y, Xu H, Chen F, Gao H, Huang Y, Yi W, Zhou Z. Specific assembly of dihydrobenzofuran frameworks via Rh( iii)-catalysed C–H coupling of N-phenoxyacetamides with 2-alkenylphenols. NEW J CHEM 2022. [DOI: 10.1039/d2nj00175f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The synergistic dual directing group-enabled and Rh(iii)-catalysed redox-neutral C–H functionalization/[3+2] annulation has been realized for the synthesis of dihydrobenzofurans.
Collapse
Affiliation(s)
- Yinhui Wei
- Department of Fundamental Medicine & Pharmaceutical Sciences, Bijie Medical College, Bijie, 551700, China
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Huiying Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Fangyuan Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Hui Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Yugang Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wei Yi
- Department of Fundamental Medicine & Pharmaceutical Sciences, Bijie Medical College, Bijie, 551700, China
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
14
|
Kumar A, Hanchate V, Prabhu KR. Rhodium(III)-Catalyzed Cascade Reactions of Imines/Imidates with 4-Hydroxy-2-alkynoates to Synthesize Regioselective Furanone-Fused Isoquinoline Scaffolds. J Org Chem 2021; 86:17965-17974. [PMID: 34843247 DOI: 10.1021/acs.joc.1c02300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A regioselective synthesis of furanone-fused isoquinoline heterocycles is developed in a single step using a Rh(III) catalyst. In this reaction, a cascade C-H activation, regioselective annulation, and lactonization occur in one pot. A wide range of alkynoates was examined, which showed good regioselectivity. The regioselectivity was guided by steric bulk at the C4 position of the 4-hydroxy-2-alkynoates. The synthetic utility was exemplified, and the model reaction was scaled up to a 1 g scale.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| | - Vinayak Hanchate
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| | - Kandikere Ramaiah Prabhu
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| |
Collapse
|
15
|
Xu H, Bian M, Zhou Z, Gao H, Yi W. Mechanistic Insights into the Dual Directing Group-Mediated C-H Functionalization/Annulation via a Hydroxyl Group-Assisted M III-M V-M III Pathway. ACS OMEGA 2021; 6:17642-17650. [PMID: 34278149 PMCID: PMC8280669 DOI: 10.1021/acsomega.1c02183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The experimental investigations on the catalyst [Cp*Rh(OAc)2 and Cp*Ir (OAc)2)]-controlled [3 + 2] and [4 + 2] annulations of oximes with propargyl alcohols have been finished in our previous work and a supposed dual directing group-mediated reaction pathway has been deduced for the chemodivergent product synthesis. However, the detailed interaction modes of the dual directing groups binding with the corresponding metal center to achieve the above observed chemoselectivity remain unclear and even contradict. For instance, the calculational traditional dual direct coupling transition states suggested that both Cp*Rh(OAc)2- and Cp*Ir(OAc)2-catalyzed reactions would generate five-membered indenamines as the dominant products via [3 + 2] annulation. To address this concern, herein, systematic DFT calculations combined with proof-of-concept experiments have been carried out. Accordingly, a novel and more favorable MIII-MV-MIII reaction mechanism, which involves an unprecedented HOAc together with a hydroxyl group-assisted reaction pathway in which the hydroxyl group acts as double effectors for the formation of M-O coordination and [MeO···H···O(CCH3)O···H···O] bonding interactions, was deduced. Taken together, the present results would provide a rational basis for future development of the dual directing group-mediated C-H activation reactions.
Collapse
Affiliation(s)
- Huiying Xu
- Guangzhou
Municipal and Guangdong Provincial Key Laboratory of Protein Modification
and Degradation & Molecular Target and Clinical Pharmacology,
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Mengyao Bian
- Guangzhou
Municipal and Guangdong Provincial Key Laboratory of Protein Modification
and Degradation & Molecular Target and Clinical Pharmacology,
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhi Zhou
- Guangzhou
Municipal and Guangdong Provincial Key Laboratory of Protein Modification
and Degradation & Molecular Target and Clinical Pharmacology,
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Hui Gao
- Guangzhou
Municipal and Guangdong Provincial Key Laboratory of Protein Modification
and Degradation & Molecular Target and Clinical Pharmacology,
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wei Yi
- Guangzhou
Municipal and Guangdong Provincial Key Laboratory of Protein Modification
and Degradation & Molecular Target and Clinical Pharmacology,
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
16
|
Zhou Y, Hua R. Synthesis of 1-Benzyl-, 1-Alkoxyl-, and 1-Aminoisoquinolines via Rhodium(III)-Catalyzed Aryl C-H Activation and Alkyne Annulation. J Org Chem 2021; 86:8862-8872. [PMID: 34164989 DOI: 10.1021/acs.joc.1c00786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One-pot syntheses of 1-benzyl-, 1-alkoxyl-, and 1-alkylamino- isoquinolines through automatic directing group (DGauto)-assisted, rhodium(III)-catalyzed aryl C-H activation and annulation with internal alkynes were developed. The reactions affording 1-benzylisoquinolines involve a cascade oximation of diarylacetylenes with hydroxylamine, forming aryl benzyl ketone oxime, and oxime-assisted rhodium(III)-catalyzed aryl C-H activation and followed annulation with another molecule of diarylacetylene in a one-pot manner. The formation of 1-alkoxyl/amino isoquinolines includes the addition of nucleophilic alcohols or amines to aryl nitriles, imine-assisted rhodium-catalyzed aryl C-H activation, and subsequent alkyne annulation.
Collapse
Affiliation(s)
- Yiming Zhou
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ruimao Hua
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Kumar S, Nair AM, Volla CMR. Ru(II)-catalyzed allenylation and sequential annulation of N-tosylbenzamides with propargyl alcohols. Chem Commun (Camb) 2021; 57:6280-6283. [PMID: 34075961 DOI: 10.1039/d1cc01768c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We hereby report Ru(ii)-catalyzed C(sp2)-H allenylation of N-tosylbenzamides to access multi-substituted allenylamides. Furthermore, the allenylamides were converted to the corresponding isoquinolone derivatives via base mediated annulation. The current protocol features low catalyst loading, mild reaction conditions, high functional group compatibility and desired scalability. The unique functionality of the afforded allenes allowed further transformations to expand the practicality of the protocol.
Collapse
Affiliation(s)
- Shreemoyee Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Akshay M Nair
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
18
|
Li Y, Fang F, Zhou J, Li J, Wang R, Liu H, Zhou Y. Rhodium‐Catalyzed C−H Activation/Annulation Cascade of Aryl Oximes and Propargyl Alcohols to Isoquinoline
N
‐Oxides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuan Li
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 People's Republic of China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Feifei Fang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Jianhui Zhou
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Jiyuan Li
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Run Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Hong Liu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 People's Republic of China
| | - Yu Zhou
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 People's Republic of China
| |
Collapse
|
19
|
Amin S, Alam MM, Akhter M, Najmi AK, Siddiqui N, Husain A, Shaquiquzzaman M. A review on synthetic procedures and applications of phosphorus oxychloride (POCl 3) in the last biennial period (2018–19). PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2020.1831499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shaista Amin
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - M. Mumtaz Alam
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mymoona Akhter
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - A. K. Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nadeem Siddiqui
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Asif Husain
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - M. Shaquiquzzaman
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
20
|
Luo Y, Pu WY, Xu YJ, Dong L. Formation of diversified spiro-[imidazole-indene] derivatives from 2H-imidazoles: based on versatile propargyl alcohols. Org Chem Front 2021. [DOI: 10.1039/d1qo00629k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rh(iii)-Catalyzed efficient cascade annulation for the regioselective construction of various spiro-[imidazole-indene] derivatives has been reported by utilizing versatile propargyl alcohols as coupling partners.
Collapse
Affiliation(s)
- Yi Luo
- College of Chemistry and Material Science
- Sichuan Normal University
- Chengdu
- China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
| | - Wei-Yi Pu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Yan-Jun Xu
- College of Chemistry and Material Science
- Sichuan Normal University
- Chengdu
- China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| |
Collapse
|
21
|
Kumar GR, Rajesh M, Lin S, Liu S. Propargylic Alcohols as Coupling Partners in Transition‐Metal‐Catalyzed Arene C−H Activation. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000896] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gadi Ranjith Kumar
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 People's Republic of China
| | - Manda Rajesh
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Shuimu Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 People's Republic of China
| | - Shouping Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 People's Republic of China
| |
Collapse
|
22
|
Gujjarappa R, Vodnala N, Malakar CC. Comprehensive Strategies for the Synthesis of Isoquinolines: Progress Since 2008. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000658] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| | - Nagaraju Vodnala
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| |
Collapse
|
23
|
Chen J, Zhang L, Zheng X, Zhou J, Zhong T, Yu C. Synthesis of isoquinolinone derivatives by Rh (III)-catalyzed C–H functionalization of N-ethoxybenzamides. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1755984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Junyu Chen
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Lei Zhang
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Xiangyun Zheng
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Jian Zhou
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Tianshuo Zhong
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Chuanming Yu
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| |
Collapse
|
24
|
Xie H, Jiang J, Wang J. Rhodium(III)‐Catalyzed C−H/N−H Functionalization with Hydrogen Evolution. Chemistry 2020; 26:7365-7368. [DOI: 10.1002/chem.202000950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/18/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Hui Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry, of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jijun Jiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry, of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry, of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
25
|
Baek Y, Cheong K, Ko GH, Han GU, Han SH, Kim D, Lee K, Lee PH. Iridium-Catalyzed Cyclative Indenylation and Dienylation through Sequential B(4)–C Bond Formation, Cyclization, and Elimination from o-Carboranes and Propargyl Alcohols. J Am Chem Soc 2020; 142:9890-9895. [DOI: 10.1021/jacs.0c02121] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yonghyeon Baek
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kiun Cheong
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gi Hoon Ko
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gi Uk Han
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang Hoon Han
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Kooyeon Lee
- Department of Bio-Health Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
26
|
Li C, Xu HB, Zhang J, Liu M, Dong L. Synthesis of rhodium(iii)-catalyzed isoquinoline derivatives from allyl carbonates and benzimidates with hydrogen evolution. Org Biomol Chem 2020; 18:1412-1416. [PMID: 32016247 DOI: 10.1039/c9ob02553g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel Rh(iii)-catalyzed cascade C-H activation/cyclization approach to access isoquinoline derivatives from benzimidates and available allyl carbonates with the liberation of H2 has been realized. Allyl carbonates were first used as a versatile and universal C2 synthon to synthesize this biological activity skeleton via an efficient and practical process just within 1 h.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Hui-Bei Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jing Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Man Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
27
|
Alharis RA, McMullin CL, Davies DL, Singh K, Macgregor SA. Understanding electronic effects on carboxylate-assisted C-H activation at ruthenium: the importance of kinetic and thermodynamic control. Faraday Discuss 2019; 220:386-403. [PMID: 31528900 DOI: 10.1039/c9fd00063a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Meta- and para-substituted 1-phenylpyrazoles (R-phpyz-H) react with [RuCl2(p-cymene)]2 in the presence of NaOAc to form cyclometallated complexes [M(R-phpyz)Cl(p-cymene)] (where R = NMe2, OMe, Me, H, F, CF3 and NO2). Experimental and DFT studies indicate that product formation can be reversible or irreversible depending on the substituents and the reaction conditions. Competition experiments show that the kinetic selectivity favours electron-donating substituents and correlate well with the Hammett parameter, giving a negative slope (ρ = -2.4) that is consistent with a cationic transition state. However, surprisingly, the thermodynamic selectivity is completely opposite, with substrates featuring electron-withdrawing groups being favoured. These trends are reproduced with DFT calculations that locate a rate-limiting transition state dominated by Ru-O bond dissociation and minimal C-H bond elongation. Detailed computational analysis of these transition states shows that C-H activation proceeds by an AMLA/CMD mechanism through a synergic combination of a C-H→Ru agostic interaction and C-HO H-bonding. NBO calculations also highlight a syndetic bonding term, and the relative weights of these three components vary in a complementary fashion depending on the nature of the substituent. With meta-substituted ligands H/D exchange experiments signal kinetically accessible ortho-C-H activation when R = NMe2, OMe and Me. This is also modelled computationally and the calculations highlight the kinetic relevance of the HOAc/Cl exchange that occurs post C-H bond cleavage, in particular with the bulkier NMe2 and Me substituents. Our study highlights that the experimental substituent effects are dependent on the reaction conditions and so using such studies to assign the mechanism of C-H activation in either stoichiometric or catalytic reactions may be misleading.
Collapse
Affiliation(s)
- Raed A Alharis
- Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK.
| | | | | | | | | |
Collapse
|
28
|
Talasila DS, Queensen MJ, Barnes-Flaspoler M, Jurkowski K, Stephenson E, Rabus JM, Bauer EB. Ferrocenium Cations as Catalysts for the Etherification of Cyclopropyl-Substituted Propargylic Alcohols: Ene-yne Formation and Mechanistic Insights. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Deva Saroja Talasila
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard 63121 St. Louis MO USA
| | - Matthew J. Queensen
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard 63121 St. Louis MO USA
| | - Michael Barnes-Flaspoler
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard 63121 St. Louis MO USA
| | - Kellsie Jurkowski
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard 63121 St. Louis MO USA
| | - Evan Stephenson
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard 63121 St. Louis MO USA
| | - Jordan M. Rabus
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard 63121 St. Louis MO USA
| | - Eike B. Bauer
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard 63121 St. Louis MO USA
| |
Collapse
|
29
|
Kong WJ, Finger LH, Messinis AM, Kuniyil R, Oliveira JCA, Ackermann L. Flow Rhodaelectro-Catalyzed Alkyne Annulations by Versatile C-H Activation: Mechanistic Support for Rhodium(III/IV). J Am Chem Soc 2019; 141:17198-17206. [PMID: 31549815 DOI: 10.1021/jacs.9b07763] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A flow-metallaelectro-catalyzed C-H activation was realized in terms of robust rhodaelectro-catalyzed alkyne annulations. To this end, a modular electro-flow cell with a porous graphite felt anode was designed to ensure efficient turnover. Thereby, a variety of C-H/N-H functionalizations proved amenable for alkyne annulations with high levels of regioselectivity and functional group tolerance, viable in both an inter- or intramolecular manner. The electro-flow C-H activation allowed easy scale up, while in-operando kinetic analysis was accomplished by online flow-NMR spectroscopy. Mechanistic studies suggest an oxidatively induced reductive elimination pathway on rhodium(III) in an electrocatalytic regime.
Collapse
Affiliation(s)
- Wei-Jun Kong
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - Lars H Finger
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - Antonis M Messinis
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - João C A Oliveira
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstrasse 2 , 37077 Göttingen , Germany
| |
Collapse
|
30
|
Tanaka R, Tanimoto I, Kojima M, Yoshino T, Matsunaga S. Imidate as the Intact Directing Group for the Cobalt-Catalyzed C–H Allylation. J Org Chem 2019; 84:13203-13210. [DOI: 10.1021/acs.joc.9b01972] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ryo Tanaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Iku Tanimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
31
|
Affiliation(s)
- Hongwei Qian
- Department of ChemistryLishui University 1 Xueyuan Road Lishui City Zhejiang Province 323000 People's Republic of China
| | - Dayun Huang
- Department of ChemistryLishui University 1 Xueyuan Road Lishui City Zhejiang Province 323000 People's Republic of China
| | - Yicheng Bi
- Qingdao University of Science & TechnologySifang Campus 53 Zhengzhou Road Qingdao Shandong 266042 People's Republic of China
| | - Guobing Yan
- Department of ChemistryLishui University 1 Xueyuan Road Lishui City Zhejiang Province 323000 People's Republic of China
| |
Collapse
|
32
|
Wang B, Wang X, Yin X, Yu W, Liao Y, Ye J, Wang M, Liao J. Cu-Catalyzed S N2' Substitution of Propargylic Phosphates with Vinylarene-Derived Chiral Nucleophiles: Synthesis of Chiral Allenes. Org Lett 2019; 21:3913-3917. [PMID: 31074282 DOI: 10.1021/acs.orglett.9b00908] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new Cu-catalyzed enantioselective three-component (i.e., styrenes, B2pin2, and propargylic phosphates) allenylation via an SN2' substitution of propargylic electrophiles with vinylarene-derived chiral nucleophiles is presented. This method provides an efficient and enantioselective approach to access a range of optically pure di-(1,1-), tri-, and tetra-substituted allenes with α-central chirality and axial chirality in excellent chemo-, regio-, diastereo-, and enantioselectivities.
Collapse
Affiliation(s)
- Bing Wang
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xihong Wang
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xuemei Yin
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Wangzhi Yu
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yang Liao
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jialin Ye
- College of Chemical Engineering , Sichuan University Chengdu 610065 , China
| | - Min Wang
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jian Liao
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China.,College of Chemical Engineering , Sichuan University Chengdu 610065 , China
| |
Collapse
|
33
|
Chaudhary B, Auti P, Shinde SD, Yakkala PA, Giri D, Sharma S. Rh(III)-Catalyzed [3 + 2] Annulation via C–H Activation: Direct Access to Trifluoromethyl-Substituted Indenamines and Aminoindanes. Org Lett 2019; 21:2763-2767. [DOI: 10.1021/acs.orglett.9b00720] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bharatkumar Chaudhary
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Prashant Auti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Suchita Dattatray Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Prasanna Anjaneyulu Yakkala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Deepesh Giri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Satyasheel Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
34
|
Copper/l-proline-catalyzed synthesis of 5-amino-2,3-diphenylimidazo[2,1-a]isoquinolines in the presence of Cs2CO3. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-018-2344-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
35
|
Sihag P, Jeganmohan M. Regioselective Synthesis of Isocoumarins via Iridium(III)-Catalyzed Oxidative Cyclization of Aromatic Acids with Propargyl Alcohols. J Org Chem 2019; 84:2699-2712. [DOI: 10.1021/acs.joc.8b03077] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Pinki Sihag
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu, India
| |
Collapse
|
36
|
Thakur R, Jaiswal Y, Kumar A. Imidates: an emerging synthon for N-heterocycles. Org Biomol Chem 2019; 17:9829-9843. [DOI: 10.1039/c9ob01899a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent application of imidates as building blocks for the synthesis of saturated and un-saturated N-heterocycles via C–N annulation reactions under acid/base/metal-catalyzed/radical-mediated reaction conditions.
Collapse
Affiliation(s)
- Rima Thakur
- Department of Chemistry
- National Institute of Technology
- Patna
- India
| | - Yogesh Jaiswal
- Department of Chemistry
- Indian Institute of Technology Patna
- Bihta
- India
| | - Amit Kumar
- Department of Chemistry
- Indian Institute of Technology Patna
- Bihta
- India
| |
Collapse
|
37
|
Shi X, Wang R, Zeng X, Zhang Y, Hu H, Xie C, Wang M. Ruthenium (II)‐Catalyzed Oxidant‐Free Coupling/Cyclization of Benzimidates and Sulfoxonium Ylides to Form Substituted Isoquinolines. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800844] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xinxia Shi
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Rongchao Wang
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Xiaofei Zeng
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Yilan Zhang
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Huiling Hu
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Chunsong Xie
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Min Wang
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| |
Collapse
|