1
|
van Hurne S, Raut SK, Smulders MMJ. Recyclable Covalent Adaptable Polystyrene Networks Using Boronates and TetraAzaADamantanes. ACS APPLIED POLYMER MATERIALS 2024; 6:7918-7925. [PMID: 39022348 PMCID: PMC11250031 DOI: 10.1021/acsapm.4c01633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
With an ever-increasing annual production of polymers and the accumulation of polymer waste leading to progressively adverse environmental consequences, it has become important that all polymers can be efficiently recycled at the end of their life cycle. Especially thermosets are intrinsically difficult to recycle because of their permanent covalent cross-links. A possible solution is to switch from using thermosets to covalent adaptable networks, sparking the rapid development of novel dynamic covalent chemistries and derived polymer materials. Next to development of these innovative polymer materials, there is also an evident advantage of merging the virtues of covalent adaptable networks with the proven material properties of widely used commodity plastics, by introducing dynamic covalent bonds in these original thermoplastic materials to obtain recyclable thermosets. Here we report the synthesis and characterization of a polystyrene polymer, functionalized with TetraAzaADamantanes and cross-linked with dynamic covalent boronic esters. The material properties were characterized for different degrees of cross-linking. The materials showed good solvent resistance with a high remaining insoluble fraction. In line with the typical behavior of traditional covalent adaptable networks, the prepared polystyrene-based boronate-TetraAzaADamantane materials were able to undergo stress relaxation. The material relaxation was also shown to be tunable by mixing with an acid catalyst. Lastly, the materials could be recycled at least 2 times.
Collapse
Affiliation(s)
- Simon van Hurne
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708
WE Wageningen, The
Netherlands
| | - Sagar Kumar Raut
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708
WE Wageningen, The
Netherlands
| | | |
Collapse
|
2
|
Lu H, Ye H, Zhang M, Liu Z, Zou H, You L. Photoswitchable dynamic conjugate addition-elimination reactions as a tool for light-mediated click and clip chemistry. Nat Commun 2023; 14:4015. [PMID: 37419874 DOI: 10.1038/s41467-023-39669-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/22/2023] [Indexed: 07/09/2023] Open
Abstract
Phototriggered click and clip reactions can endow chemical processes with high spatiotemporal resolution and sustainability, but are challenging with a limited scope. Herein we report photoswitchable reversible covalent conjugate addition-elimination reactions toward light-addressed modular covalent connection and disconnection. By coupling between photochromic dithienylethene switch and Michael acceptors, the reactivity of Michael reactions was tuned through closed-ring and open-ring forms of dithienylethene, allowing switching on and off dynamic exchange of a wide scope of thiol and amine nucleophiles. The breaking of antiaromaticity in transition states and enol intermediates of addition-elimination reactions provides the driving force for photoinduced change in kinetic barriers. To showcase the versatile application, light-mediated modification of solid surfaces, regulation of amphiphilic assemblies, and creation/degradation of covalent polymers on demand were achieved. The manipulation of dynamic click/clip reactions with light should set the stage for future endeavors, including responsive assemblies, biological delivery, and intelligent materials.
Collapse
Affiliation(s)
- Hanwei Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Meilan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Zimu Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Hanxun Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350002, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
van Hurne S, Kisters M, Smulders MMJ. Covalent adaptable networks using boronate linkages by incorporating TetraAzaADamantanes. Front Chem 2023; 11:1148629. [PMID: 36909710 PMCID: PMC9995436 DOI: 10.3389/fchem.2023.1148629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Boronic esters prepared by condensation of boronic acids and diols have been widely used as dynamic covalent bonds in the synthesis of both discrete assemblies and polymer networks. In this study we investigate the potential of a new dynamic-covalent motif, derived from TetraAzaADamantanes (TAADs), with their adamantane-like triol structure, in boronic ester-based covalent adaptable networks (CANs). The TetraAzaADamantane-boronic ester linkage has recently been reported as a more hydrolytically stable boronic ester variant, while still having a dynamic pH response: small-molecule studies found little exchange at neutral pH, while fast exchange occurred at pH 3.8. In this work, bi- and trifunctional TetraAzaADamantane linkers were synthesised and crosslinked with boronic acids to form rubber-like materials, with a Young's modulus of 1.75 MPa. The dynamic nature of the TetraAzaADamantane networks was confirmed by stress relaxation experiments, revealing Arrhenius-like behaviour, with a corresponding activation energy of 142 ± 10 kJ/mol. Increasing the crosslinking density of the material from 10% to 33% resulted in reduced relaxation times, as is consistent with a higher degree of crosslinking within the dynamic networks. In contrast to the reported accelerating effect of acid addition to small-molecule TetraAzaADamantane complexes, within the polymer network the addition of acid increased relaxation times, suggesting unanticipated interactions between the acid and the polymer that cannot occur in the corresponding small-molecules analogues. The obtained boronate-TetraAzaADamantane materials were thermally stable up to 150°C. This thermal stability, in combination with the intrinsically dynamic bonds inside the polymer network, allowed these materials to be reprocessed and healed after damage by hot-pressing.
Collapse
Affiliation(s)
- Simon van Hurne
- Laboratory of Organic Chemistry, Wageningen University, Wageningen, Netherlands
| | - Marijn Kisters
- Laboratory of Organic Chemistry, Wageningen University, Wageningen, Netherlands
| | | |
Collapse
|
4
|
Semakin AN, Golovanov IS, Nelyubina YV, Sukhorukov AY. 1,4,6,10-Tetraazaadamantanes (TAADs) with N-amino groups: synthesis and formation of boron chelates and host–guest complexes. Beilstein J Org Chem 2022; 18:1424-1434. [DOI: 10.3762/bjoc.18.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
A synthetic route to 1,4,6,10-tetraazaadamantanes (TAADs) bearing free and protected amino groups at the bridge N-atoms has been developed via intramolecular cyclotrimerization of C=N units in the corresponding tris(hydrazonoalkyl)amines. In a similar fashion, unsymmetrically substituted TAADs having both amino and hydroxy groups at the bridge N-atoms were prepared via a hitherto unknown co-trimerization of oxime and hydrazone groups. The use of N-TAAD derivatives as potential ligands and receptors was showcased through forming boron chelates and host–guest complexes with water and simple alcohols.
Collapse
|
5
|
Golovanov I, Leonov A, Lesnikov V, Pospelov E, Frolov KV, Korlyukov A, Nelyubina YV, Novikov VV, Sukhorukov AY. Iron(IV) Complexes with Tetraazaadamantane-based Ligands: Synthesis, Structure, Application in Dioxygen Activation and Labeling of Biomolecules. Dalton Trans 2022; 51:4284-4296. [DOI: 10.1039/d1dt04104e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
4,6,10-Trihydroxy-1,4,6,10-tetraazaadamantane (TAAD) has been shown to form a stable Fe(IV) complex having a diamantane cage structure, in which the metal center is coordinated by three oxygen atoms of the deprotonated...
Collapse
|
6
|
Dalinger AI, Medved’ko AV, Kalinin MA, Sereda VA, Churakov AV, Vatsadze SZ. Synthesis of 2,2,5,7-tetramethyl-1,3-diazaadamantan-6-one and study of the supramolecular structure of its monohydrate. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3180-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Click chemistry strategies for the accelerated synthesis of functional macromolecules. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210126] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Adamczyk-Woźniak A, Gozdalik JT, Kaczorowska E, Durka K, Wieczorek D, Zarzeczańska D, Sporzyński A. (Trifluoromethoxy)Phenylboronic Acids: Structures, Properties, and Antibacterial Activity. Molecules 2021; 26:molecules26072007. [PMID: 33916124 PMCID: PMC8036725 DOI: 10.3390/molecules26072007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 12/20/2022] Open
Abstract
Three isomers of (trifluoromethoxy)phenylboronic acids were studied in the context of their physicochemical, structural, antimicrobial and spectroscopic properties. They were characterized by 1H, 13C, 11B and 19F NMR spectroscopy. The acidity of all the isomers was evaluated by both spectrophotometric and potentiometric titrations. The introduction of the -OCF3 group influences the acidity, depending, however, on the position of a substituent, with the ortho isomer being the least acidic. Molecular and crystal structures of ortho and para isomers were determined by the single crystal XRD method. Hydrogen bonded dimers are the basic structural motives of the investigated molecules in the solid state. In the case of the ortho isomer, intramolecular hydrogen bond with the -OCF3 group is additionally formed, weaker, however, than that in the analogous -OCH3 derivative, which has been determined by both X-Ray measurements as well as theoretical DFT calculations. Docking studies showed possible interactions of the investigated compounds with LeuRS of Escherichia coli. Finally, the antibacterial potency of studied boronic acids in vitro were evaluated against Escherichia coli and Bacillus cereus.
Collapse
Affiliation(s)
- Agnieszka Adamczyk-Woźniak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (J.T.G.); (E.K.); (K.D.)
- Correspondence:
| | - Jan T. Gozdalik
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (J.T.G.); (E.K.); (K.D.)
| | - Ewa Kaczorowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (J.T.G.); (E.K.); (K.D.)
| | - Krzysztof Durka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (J.T.G.); (E.K.); (K.D.)
| | - Dorota Wieczorek
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland;
| | - Dorota Zarzeczańska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland;
| | - Andrzej Sporzyński
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (J.T.G.); (E.K.); (K.D.)
- Faculty of Agriculture and Forestry, University of Warmia and Mazury, Oczapowskiego 8, 10-719 Olsztyn, Poland;
| |
Collapse
|
9
|
de Vries RH, Viel JH, Kuipers OP, Roelfes G. Rapid and Selective Chemical Editing of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs) via Cu II -Catalyzed β-Borylation of Dehydroamino Acids. Angew Chem Int Ed Engl 2021; 60:3946-3950. [PMID: 33185967 PMCID: PMC7898795 DOI: 10.1002/anie.202011460] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 12/22/2022]
Abstract
We report the fast and selective chemical editing of ribosomally synthesized and post-translationally modified peptides (RiPPs) by β-borylation of dehydroalanine (Dha) residues. The thiopeptide thiostrepton was modified efficiently using CuII -catalysis under mild conditions and 1D/2D NMR of the purified product showed site-selective borylation of the terminal Dha residues. Using similar conditions, the thiopeptide nosiheptide, lanthipeptide nisin Z, and protein SUMO_G98Dha were also modified efficiently. Borylated thiostrepton showed an up to 84-fold increase in water solubility, and minimum inhibitory concentration (MIC) assays showed that antimicrobial activity was maintained in thiostrepton and nosiheptide. The introduced boronic-acid functionalities were shown to be valuable handles for chemical mutagenesis and in a reversible click reaction with triols for the pH-controlled labeling of RiPPs.
Collapse
Affiliation(s)
- Reinder H. de Vries
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Jakob H. Viel
- Department of Molecular GeneticsGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 79747AGGroningenThe Netherlands
| | - Oscar P. Kuipers
- Department of Molecular GeneticsGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 79747AGGroningenThe Netherlands
| | - Gerard Roelfes
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
10
|
Golovanov IS, Sukhorukov AY. Merging Boron with Nitrogen-Oxygen Bonds: A Review on BON Heterocycles. Top Curr Chem (Cham) 2021; 379:8. [PMID: 33544252 DOI: 10.1007/s41061-020-00317-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/20/2020] [Indexed: 11/25/2022]
Abstract
Cyclic boronate esters play important roles in organic synthesis, pharmacology, supramolecular chemistry and materials science owing to their stability in air and versatile reactivity. Most of these compounds contain a B-O-C linkage with an alkoxy- or carboxylate group bound to the boron atom (e.g. boronate-diol esters, MIDA boronates). Boron chelates comprising a B-O-N motif (BON heterocycles) are much less explored, although first representatives of this class were prepared in the early 1960s. In recent years, there has been a growing interest in BON heterocycles as new chemotypes for drug design. The exocyclic B-O-N linkage, which is readily formed under mild conditions, shows surprising hydrolytic and thermal resistance. This allows the formation of BON heterocycles to be used as click-type reactions for the preparation of bioconjugates and functionally modified polymers. We believe that BON heterocycles are promising yet underrated organoboron derivatives. This review summarizes the scattered information about known types of BON heterocycles, including their synthesis, reactivity and structural data. Available applications of BON heterocycles in materials science and medicinal chemistry, along with their prospects, are also discussed. The bibliography contains 289 references.
Collapse
Affiliation(s)
- Ivan S Golovanov
- Laboratory of Organic and Metal-Organic Nitrogen-Oxygen Systems, N. D. Zelinsky Institute of Organic Chemistry, Leninsky prospect, 47, 119991, Moscow, Russia.
| | - Alexey Yu Sukhorukov
- Laboratory of Organic and Metal-Organic Nitrogen-Oxygen Systems, N. D. Zelinsky Institute of Organic Chemistry, Leninsky prospect, 47, 119991, Moscow, Russia.
- Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, Stremyanny lane, 36, 117997, Moscow, Russia.
| |
Collapse
|
11
|
Spectacular Enhancement of the Thermal and Photochemical Stability of MAPbI3 Perovskite Films Using Functionalized Tetraazaadamantane as a Molecular Modifier. ENERGIES 2021. [DOI: 10.3390/en14030669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Perovskite solar cells represent a highly promising third-generation photovoltaic technology. However, their practical implementation is hindered by low device operational stability, mostly related to facile degradation of the absorber materials under exposure to light and elevated temperatures. Improving the intrinsic stability of complex lead halides is a big scientific challenge, which might be addressed using various “molecular modifiers”. These modifiers are usually represented by some additives undergoing strong interactions with the perovskite absorber material, resulting in enhanced solar cell efficiency and/or operational stability. Herein, we present a derivative of 1,4,6,10-tetraazaadamantane, NAdCl, as a promising molecular modifier for lead halide perovskites. NAdCl spectacularly improved both the thermal and photochemical stability of methylammonium lead iodide (MAPbI3) films and, most importantly, prevented the formation of metallic lead Pb0 as a photolysis product. NAdCl improves the electronic quality of perovskite films by healing the traps for charge carriers. Furthermore, it strongly interacts with the perovskite framework and most likely stabilizes undercoordinated Pb2+ ions, which are responsible for Pb0 formation under light exposure. The obtained results feature 1,4,6,10-tetraazaadamantane derivatives as highly promising molecular modifiers that might help to improve the operational lifetime of perovskite solar cells and facilitate the practical implementation of this photovoltaic technology.
Collapse
|
12
|
Vries RH, Viel JH, Kuipers OP, Roelfes G. Rapid and Selective Chemical Editing of Ribosomally Synthesized and Post‐Translationally Modified Peptides (RiPPs) via Cu
II
‐Catalyzed β‐Borylation of Dehydroamino Acids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Reinder H. Vries
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Jakob H. Viel
- Department of Molecular Genetics Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
13
|
Semakin AN, Nelyubina YV, Ioffe SL, Sukhorukov AY. 2,4,9‐Triazaadamantanes with “Clickable” Groups: Synthesis, Structure and Applications as Tripodal Platforms. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Artem N. Semakin
- Laboratory of organic and metal‐organic nitrogen‐oxygen systems N. D. Zelinsky Institute of Organic Chemistry Leninsky prospect, 47 119991 Moscow Russia
| | - Yulia V. Nelyubina
- Center for molecular composition studies A. N. Nesmeyanov Institute of Organoelement Compounds Vavilov str. 28 119991 Moscow Russia
| | - Sema L. Ioffe
- Laboratory of organic and metal‐organic nitrogen‐oxygen systems N. D. Zelinsky Institute of Organic Chemistry Leninsky prospect, 47 119991 Moscow Russia
| | - Alexey Yu. Sukhorukov
- Laboratory of organic and metal‐organic nitrogen‐oxygen systems N. D. Zelinsky Institute of Organic Chemistry Leninsky prospect, 47 119991 Moscow Russia
- Department of Innovational Materials and Technologies Chemistry Plekhanov Russian University of Economics Stremyanny per. 36 117997 Moscow Russia
| |
Collapse
|
14
|
Lehmann M, Dechant M, Holzapfel M, Schmiedel A, Lambert C. Fulleren-gefüllte Flüssigkristall-Sterne: Ein supramolekularer Klick-Mechanismus zur Bildung von maßgeschneiderten Donor-Akzeptor-Strukturen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Matthias Lehmann
- Institut für Organische Chemie & Center for Nanosystems Chemistry; Julius Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
| | - Moritz Dechant
- Institut für Organische Chemie & Center for Nanosystems Chemistry; Julius Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
| | - Marco Holzapfel
- Institut für Organische Chemie & Center for Nanosystems Chemistry; Julius Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
| | - Alexander Schmiedel
- Institut für Organische Chemie & Center for Nanosystems Chemistry; Julius Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
| | - Christoph Lambert
- Institut für Organische Chemie & Center for Nanosystems Chemistry; Julius Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
15
|
Lehmann M, Dechant M, Holzapfel M, Schmiedel A, Lambert C. Fullerene-Filled Liquid-Crystal Stars: A Supramolecular Click Mechanism for the Generation of Tailored Donor-Acceptor Assemblies. Angew Chem Int Ed Engl 2019; 58:3610-3615. [DOI: 10.1002/anie.201812465] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Matthias Lehmann
- Institut für Organische Chemie, and Center for Nanosystems Chemistry; Julius Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Moritz Dechant
- Institut für Organische Chemie, and Center for Nanosystems Chemistry; Julius Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Marco Holzapfel
- Institut für Organische Chemie, and Center for Nanosystems Chemistry; Julius Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Alexander Schmiedel
- Institut für Organische Chemie, and Center for Nanosystems Chemistry; Julius Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Christoph Lambert
- Institut für Organische Chemie, and Center for Nanosystems Chemistry; Julius Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|