1
|
Tajima R, Tanaka K, Aida K, Ota E, Yamaguchi J. Catalytic Reductive Homocoupling of Benzyl Chlorides Enabled by Zirconocene and Photoredox Catalysis. PRECISION CHEMISTRY 2025; 3:43-50. [PMID: 39886378 PMCID: PMC11775857 DOI: 10.1021/prechem.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 02/01/2025]
Abstract
The bibenzyl skeleton is prevalent in numerous natural products and other biologically active compounds. Radical homocoupling provides a straightforward approach for synthesizing bibenzyls in a single step with the reductive homocoupling of benzyl halides undergoing extensive development. Unlike benzyl bromides and other tailored precursors used in visible-light-mediated homocoupling, benzyl chlorides offer greater abundance and chemical stability. Nevertheless, achieving chemoselective cleavage of the C-Cl bond poses significant challenges, with only a limited number of studies reported to date. Herein, we demonstrate a catalytic reductive homocoupling of benzyl chlorides facilitated by zirconocene and photoredox catalysis. This cooperative catalytic system promotes C-Cl bond cleavage in benzyl chlorides under mild conditions and supports the homocoupling of a wide range of benzyl chlorides, including those derived from pharmaceutical agents. Our preliminary mechanistic investigations highlight the pivotal role of hydrosilane in the catalytic cycle.
Collapse
Affiliation(s)
- Ryota Tajima
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Keisuke Tanaka
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Kazuhiro Aida
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Eisuke Ota
- Waseda
Institute for Advanced Study, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
2
|
Mato M, Stamoulis A, Cleto Bruzzese P, Cornella J. Activation and C-C Coupling of Aryl Iodides via Bismuth Photocatalysis. Angew Chem Int Ed Engl 2025; 64:e202418367. [PMID: 39436157 PMCID: PMC11773318 DOI: 10.1002/anie.202418367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Within the emerging field of bismuth redox catalysis, the catalytic formation of C-C bonds using aryl halides would be highly desirable; yet such a process remains a synthetic challenge. Herein, we present a chemoselective bismuth-photocatalyzed activation and subsequent coupling of (hetero)aryl iodides with pyrrole derivatives to access C(sp2)-C(sp2) linkages through C-H functionalization. This unique reactivity is the result of the bismuth complex featuring two redox state-dependent interactions with light, which 1) activates the Bi(I) complex for oxidative addition via MLCT, and 2) promotes the homolytic cleavage of aryl Bi(III) intermediates through a LLCT process.
Collapse
Affiliation(s)
- Mauro Mato
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Alexios Stamoulis
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Paolo Cleto Bruzzese
- Max-Planck-Institut für Chemische EnergiekonversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Josep Cornella
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
3
|
Fang CZ, Zhang BB, Tu YL, Liu Q, Wang ZX, Chen XY. Radical Replacement Process for Ligated Boryl Radical-Mediated Activation of Unactivated Alkyl Chlorides for C(sp 3)-C(sp 3) Bond Formation. J Am Chem Soc 2024; 146:26574-26584. [PMID: 39264946 DOI: 10.1021/jacs.4c10915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The ligated boryl radical (LBR) has emerged as a potent tool for activating alkyl halides in radical transformations through halogen-atom transfer (XAT). However, unactivated alkyl chlorides still present an open challenge for this strategy. We herein describe a new activation mode of the LBR for the activation of unactivated alkyl chlorides to construct a C(sp3)-C(sp3) bond. Mechanistic studies reveal that the success of the protocol relies on a radical replacement process between the LBR and unactivated alkyl chloride, forming an alkyl borane intermediate as the alkyl radical precursor. Aided with the additive K3PO4, the alkyl borane then undergoes one-electron oxidation, generating an alkyl radical. The incorporation of the radical replacement activation model to activate unactivated alkyl chlorides significantly enriches LBR chemistry, which has been applied to activate alkyl iodides, alkyl bromides, and activated alkyl chlorides via XAT.
Collapse
Affiliation(s)
- Chang-Zhen Fang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100049, China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100049, China
| | - Yong-Liang Tu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100049, China
| | - Qiang Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| |
Collapse
|
4
|
Si X, Zhang Y, Zhang X, Pan X, Wang F, Shao X, Yao Q, Duan W, Huang X, Su J. A Porous Carbazolic Al-MOF for Efficient Aerobic Photo-Oxidation of Sulfides into Sulfoxides under Air. Inorg Chem 2024; 63:4707-4715. [PMID: 38410082 DOI: 10.1021/acs.inorgchem.3c04359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A robust, microporous, and photoactive aluminum-based metal-organic framework (Al-MOF, LCU-600) has been assembled by an in situ-formed [Al3O(CO2)6] trinuclear building unit and a tritopic carbazole ligand. LCU-600 shows a high water stability and permanent porosity for N2 and CO2 adsorption. Notably, the incorporation of photoresponsive carbazole moieties into LCU-600 makes it a highly efficient and recyclable photocatalyst for aerobic photo-oxidation of sulfides into sulfoxides under an air atmosphere at room temperature. Mechanism investigations unveil that photogenerated holes (h+), superoxide radical anion (O2•-), and singlet oxygen (1O2) are critical active spices for the photo-oxidation reaction performed in an air atmosphere.
Collapse
Affiliation(s)
- Xuezhen Si
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Yanjun Zhang
- Luxi Chemical Group Co., Ltd., New Chemical Materials Industrial Park, Liaocheng 252000, P. R. China
| | - Xiaoying Zhang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Xuze Pan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Fudong Wang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Xiaodong Shao
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Qingxia Yao
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Wenzeng Duan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Jie Su
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
5
|
Tian X, Liu Y, Yakubov S, Schütte J, Chiba S, Barham JP. Photo- and electro-chemical strategies for the activations of strong chemical bonds. Chem Soc Rev 2024; 53:263-316. [PMID: 38059728 DOI: 10.1039/d2cs00581f] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The employment of light and/or electricity - alternatively to conventional thermal energy - unlocks new reactivity paradigms as tools for chemical substrate activations. This leads to the development of new synthetic reactions and a vast expansion of chemical spaces. This review summarizes recent developments in photo- and/or electrochemical activation strategies for the functionalization of strong bonds - particularly carbon-heteroatom (C-X) bonds - via: (1) direct photoexcitation by high energy UV light; (2) activation via photoredox catalysis under irradiation with relatively lower energy UVA or blue light; (3) electrochemical reduction; (4) combination of photocatalysis and electrochemistry. Based on the types of the targeted C-X bonds, various transformations ranging from hydrodefunctionalization to cross-coupling are covered with detailed discussions of their reaction mechanisms.
Collapse
Affiliation(s)
- Xianhai Tian
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Yuliang Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Shahboz Yakubov
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Jonathan Schütte
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Shunsuke Chiba
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
6
|
Weick F, Hagmeyer N, Giraud M, Dietzek-Ivanšić B, Wagenknecht HA. Reductive Activation of Aryl Chlorides by Tuning the Radical Cation Properties of N-Phenylphenothiazines as Organophotoredox Catalysts. Chemistry 2023; 29:e202302347. [PMID: 37589486 DOI: 10.1002/chem.202302347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/18/2023]
Abstract
Aryl chlorides as substrates for arylations present a particular challenge for photoredox catalytic activation due to their strong C(sp2 )-Cl bond and their strong reduction potential. Electron-rich N-phenylphenothiazines, as organophotoredox catalysts, are capable of cleaving aryl chlorides simply by photoinduced electron transfer without the need for an additional electrochemical activation setup or any other advanced photocatalysis technique. Due to the extremely strong reduction potential in the excited state of the N-phenylphenothiazines the substrate scope is high and includes aryl chlorides both with electron-withdrawing and electron-donating substituents. We evidence this reactivity for photocatalytic borylations and phosphonylations. Advanced time-resolved transient absorption spectroscopy in combination with electrochemistry was the key to elucidating and comparing the unusual photophysical properties not only of the N-phenylphenothiazines, but also of their cation radicals as the central intermediates in the photocatalytic cycle. The revealed photophysics allowed the excited-state and radical-cation properties to be fine-tuned by the molecular design of the N-phenylphenothiazines; this improved the photocatalytic activity.
Collapse
Affiliation(s)
- Fabian Weick
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Nina Hagmeyer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstraße 4, 07743, Jena, Germany
| | - Madeleine Giraud
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstraße 4, 07743, Jena, Germany
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| |
Collapse
|
7
|
Lai Y, Halder A, Kim J, Hicks TJ, Milner PJ. Electroreductive Radical Borylation of Unactivated (Hetero)Aryl Chlorides Without Light by Using Cumulene-Based Redox Mediators. Angew Chem Int Ed Engl 2023; 62:e202310246. [PMID: 37559156 PMCID: PMC10529720 DOI: 10.1002/anie.202310246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023]
Abstract
Single-electron transfer (SET) plays a critical role in many chemical processes, from organic synthesis to environmental remediation. However, the selective reduction of inert substrates (Ep/2 <-2 V vs Fc/Fc+ ), such as ubiquitous electron-neutral and electron-rich (hetero)aryl chlorides, remains a major challenge. Current approaches largely rely on catalyst photoexcitation to reach the necessary deeply reducing potentials or suffer from limited substrate scopes. Herein, we demonstrate that cumulenes-organic molecules with multiple consecutive double bonds-can function as catalytic redox mediators for the electroreductive radical borylation of (hetero)aryl chlorides at relatively mild cathodic potentials (approximately -1.9 V vs. Ag/AgCl) without the need for photoirradiation. Electrochemical, spectroscopic, and computational studies support that step-wise electron transfer from reduced cumulenes to electron-neutral chloroarenes is followed by thermodynamically favorable mesolytic cleavage of the aryl radical anion to generate the desired aryl radical intermediate. Our findings will guide the development of other sustainable, purely electroreductive radical transformations of inert molecules using organic redox mediators.
Collapse
Affiliation(s)
- Yihuan Lai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Arjun Halder
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jaehwan Kim
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Thomas J Hicks
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Phillip J Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
8
|
Matsubara R, Harada T, Xie W, Yabuta T, Xu J, Hayashi M. Sensitizer-Free Photochemical Regeneration of Benzimidazoline Organohydride. J Org Chem 2023; 88:12276-12288. [PMID: 37590088 DOI: 10.1021/acs.joc.3c00898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Organohydrides are an important class of organic compounds that can provide hydride anions for chemical and biochemical reactions, as demonstrated by reduced nicotinamide adenine dinucleotides serving as important natural redox cofactors. The coupling of hydride transfer from the organohydride to the substrate and subsequent regeneration of the organohydride from its oxidized form can realize organohydride-catalyzed reduction reactions. Depending on the structure of the organohydride, its hydridicity and ease of regeneration vary. Benzimidazoline (BIH) is one of the strongest synthetic C-H hydride donors; however, its reductive regeneration requires highly reducing conditions. In this study, we synthesized various oxidized and reduced forms of BIH derivatives with aryl groups at the 2-position and investigated their photophysical and electrochemical properties. 4-(Dimethylamino)phenyl-substituted BIH exhibited salient red-shifted absorption compared with other synthesized BIH derivatives, and visible-light-driven regeneration without using an external photosensitizer was achieved. This knowledge has significant implications for the future development of solar-energy-based catalytic photoreduction technologies that utilize organohydride regeneration strategies.
Collapse
Affiliation(s)
- Ryosuke Matsubara
- Department of Chemistry, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Tatsuhiro Harada
- Department of Chemistry, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Weibin Xie
- Department of Chemistry, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Tatsushi Yabuta
- Department of Chemistry, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Jiasheng Xu
- Department of Chemistry, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Masahiko Hayashi
- Department of Chemistry, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
9
|
Ji CL, Zhai X, Fang QY, Zhu C, Han J, Xie J. Photoinduced activation of alkyl chlorides. Chem Soc Rev 2023; 52:6120-6138. [PMID: 37555398 DOI: 10.1039/d3cs00110e] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
In recent years, the activation of unactivated alkyl chlorides through light-induced processes has emerged as a promising field in radical chemistry, and has led to new transformations in organic synthesis. Direct utilization of alkyl chlorides as C(sp3)-hybridized electrophiles enables the facile construction of carbon-carbon and carbon-heteroatom bonds. Furthermore, recent studies in medicinal chemistry indicate that their presence is associated with high levels of success in clinical trials. This review summarizes the recent advances in the photoinduced activation of unactivated alkyl chlorides and discusses the mechanistic aspects underlying these reactions. We anticipate that this review will serve as a valuable resource for researchers in the field of unactivated chemical bond functionalization, and inspire considerable developments in organic chemistry, drug synthesis, materials science and other related disciplines.
Collapse
Affiliation(s)
- Cheng-Long Ji
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xinyi Zhai
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Qing-Yun Fang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
- Green Catalysis Center, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
10
|
Tripathy AR, Mishra A, Singh V, Yatham VR. Metal-Free Direct C3-H Alkylation and Arylation of Quinoxalin-2(1H)-Ones with Inert Alkyl and Aryl Chlorides. Chemistry 2023; 29:e202300774. [PMID: 37283201 DOI: 10.1002/chem.202300774] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023]
Abstract
In the present manuscript, we reported the first visible-light-enabled direct C3-H alkylation/arylation of quinoxalin-2(1H)-ones with unactivated alkyl/aryl chlorides under metal-free conditions. A wide range of unactivated alkyl and aryl chlorides containing different functionalities are coupled with a variety of quinoxalin-2(1H)-one derivatives under mild reaction conditions to afford the C3-alkyl/aryl substituted quinoxalin-2(1H)-ones in moderate to good yields.
Collapse
Affiliation(s)
- Alisha Rani Tripathy
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), 695551, India
| | - Ashutosh Mishra
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), 695551, India
| | - Vesaj Singh
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), 695551, India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), 695551, India
| |
Collapse
|
11
|
Shirakawa E, Ota Y, Yonekura K, Okura K, Mizusawa S, Sarkar SK, Abe M. Manipulation of an electron by photoirradiation in the electron-catalyzed cross-coupling reaction. SCIENCE ADVANCES 2023; 9:eadh3544. [PMID: 37256951 PMCID: PMC10413655 DOI: 10.1126/sciadv.adh3544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023]
Abstract
An electron has recently been shown to catalyze the cross-coupling reaction of organometallic compounds with aryl halides. In terms of green and sustainable chemistry, the electron catalysis is much more desirable than the inevitably used transition metal catalysis but a high temperature of more than 100°C is required to achieve it. Here, we disclose that visible light photoirradiation accelerates the electron-catalyzed reaction of arylzinc reagents with aryl halides with the aid of a photoredox catalysis. Photoexcitation of a photoredox catalyst and an anion radical intermediate respectively affects the supply and transfer of the electron catalyst, promoting the cross-coupling reaction to proceed at room temperature. The supply of the electron catalyst by the photoredox catalysis makes the scope of aryl halides wider.
Collapse
Affiliation(s)
- Eiji Shirakawa
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Yuki Ota
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Kyohei Yonekura
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Keisho Okura
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Sahiro Mizusawa
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
- Fine Materials Department, Osaka Gas Chemicals, Co., Ltd., Konohana-ku, Osaka, 554-0051, Japan
| | - Sujan Kumar Sarkar
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashihiroshima, Hiroshima 739-8526, Japan
- Advanced Patterning Department, Interuniversity Microelectronics Centre (IMEC), Leuven 3001, Belgium
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashihiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
12
|
Matsubara R, Kuang H, Yabuta T, Xie W, Hayashi M, Sakuda E. Photophysical and electrochemical properties of 9-naphthyl-3,6-diaminocarbazole derivatives and their application as photosensitizers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
13
|
Xie W, Xu J, Md Idros U, Katsuhira J, Fuki M, Hayashi M, Yamanaka M, Kobori Y, Matsubara R. Metal-free reduction of CO 2 to formate using a photochemical organohydride-catalyst recycling strategy. Nat Chem 2023:10.1038/s41557-023-01157-6. [PMID: 36959509 DOI: 10.1038/s41557-023-01157-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2023] [Indexed: 03/25/2023]
Abstract
Increasing levels of CO2 in the atmosphere is a problem that must be urgently resolved if the rise in current global temperatures is to be slowed. Chemically reducing CO2 into compounds that are useful as energy sources and carbon-based materials could be helpful in this regard. However, for the CO2 reduction reaction (CO2RR) to be operational on a global scale, the catalyst system must: use only renewable energy, be built from abundantly available elements and not require high-energy reactants. Although light is an attractive renewable energy source, most existing CO2RR methods use electricity and many of the catalysts used are based on rare heavy metals. Here we present a transition-metal-free catalyst system that uses an organohydride catalyst based on benzimidazoline for the CO2RR that can be regenerated using a carbazole photosensitizer and visible light. The system is capable of producing formate with a turnover number exceeding 8,000 and generates no other reduced products (such as H2 and CO).
Collapse
Affiliation(s)
- Weibin Xie
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Jiasheng Xu
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Ubaidah Md Idros
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Jouji Katsuhira
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Masaaki Fuki
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
- Molecular Photoscience Research Center, Kobe University, Kobe, Japan
| | - Masahiko Hayashi
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Masahiro Yamanaka
- Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, Tokyo, Japan.
| | - Yasuhiro Kobori
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan.
- Molecular Photoscience Research Center, Kobe University, Kobe, Japan.
| | - Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan.
| |
Collapse
|
14
|
Mattiello S, Ghiglietti E, Zucchi A, Beverina L. Selectivity in micellar catalysed reactions. The role of interfacial dipole, compartmentalisation, and specific interactions with the surfactants. Curr Opin Colloid Interface Sci 2023. [DOI: 10.1016/j.cocis.2023.101681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
15
|
Weinhold TD, Reece NA, Ribeiro K, Lopez Ocasio M, Watson N, Hanson K, Longstreet AR. Assessing Carbazole Derivatives as Single-Electron Photoreductants. J Org Chem 2022; 87:16928-16936. [PMID: 36472491 DOI: 10.1021/acs.joc.2c02312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The electron-donating capabilities of carbazoles have stimulated interest in their use as photoinduced single-electron reductants. Due to the modularity of the carbazole, a further broadening and understanding of their reactivity could be achieved by manipulating the structure. Herein, eight carbazole derivatives were synthesized, characterized, and assessed as single-electron photoreductants in the hydrodehalogenation of aryl halides and the arylation of N-methylpyrrole.
Collapse
Affiliation(s)
- Tyler D Weinhold
- Department of Chemistry, Biochemistry, and Physics, The University of Tampa, Tampa, Florida 33606, United States
| | - Natalie A Reece
- Department of Chemistry, Biochemistry, and Physics, The University of Tampa, Tampa, Florida 33606, United States
| | - Kevin Ribeiro
- Department of Chemistry, Biochemistry, and Physics, The University of Tampa, Tampa, Florida 33606, United States
| | - Maredh Lopez Ocasio
- Department of Chemistry, Biochemistry, and Physics, The University of Tampa, Tampa, Florida 33606, United States
| | - Noelle Watson
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Kenneth Hanson
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Ashley R Longstreet
- Department of Chemistry, Biochemistry, and Physics, The University of Tampa, Tampa, Florida 33606, United States
| |
Collapse
|
16
|
Noto N, Saito S. Arylamines as More Strongly Reducing Organic Photoredox Catalysts than fac-[Ir(ppy) 3]. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Naoki Noto
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Susumu Saito
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
17
|
Zott MD, Canestraight VM, Peters JC. Mechanism of a Luminescent Dicopper System That Facilitates Electrophotochemical Coupling of Benzyl Chlorides via a Strongly Reducing Excited State. ACS Catal 2022; 12:10781-10786. [PMID: 37388409 PMCID: PMC10306173 DOI: 10.1021/acscatal.2c03215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photochemical radical generation has become a modern staple in chemical synthesis and methodology. Herein, we detail the photochemistry of a highly reducing, highly luminescent dicopper system [Cu2] (Eox* ≈ -2.7 V vs SCE; τ0 ≈ 10 μs) within the context of a model reaction: single-electron reduction of benzyl chlorides. The dicopper system is mechanistically well defined. As we show, it is the [Cu2]* excited state that serves as the outer-sphere photoreductant of benzyl chloride substrates; the ground-state oxidized byproduct, [Cu2]+, is electrochemically recycled, demonstrating a catalytic electrophotochemical C-C coupling process.
Collapse
Affiliation(s)
- Michael D Zott
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Virginia M Canestraight
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
18
|
Aragón J, Sun S, Pascual D, Jaworski S, Lloret-Fillol J. Photoredox Activation of Inert Alkyl Chlorides for the Reductive Cross-Coupling with Aromatic Alkenes. Angew Chem Int Ed Engl 2022; 61:e202114365. [PMID: 35289039 DOI: 10.1002/anie.202114365] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Indexed: 11/08/2022]
Abstract
The inertness of chloroalkanes has precluded them as coupling partners for cross-coupling reactions. Herein we disclose a general strategy for the activation of inert alkyl chlorides through photoredox catalysis and their use as coupling partners with alkenes. The catalytic system is formed by [Ni(OTf)(Py2 Ts tacn)](OTf) (1Ni ), which is responsible for the Csp3 -Cl bond activation, and [Ir(NMe2 bpy)(ppy)2 ]PF6, (PCIr NMe2 ), which is the photoredox catalyst. Combined experimental and theoretical studies show an in situ photogenerated NiI intermediate ([Ni(Py2 Ts tacn)]+ ) which is catalytically competent for the Csp3 -Cl bond cleavage via a SN 2 mechanism for primary alkyl chlorides, forming carbon-centered free radicals, which react with the olefin leading to the formation of the Csp3 -Csp3 bond. These results suggest inert alkyl chlorides can be electrophiles for developing new intermolecular strategies in which low-valent aminopyridine nickel complexes act as key catalytic species.
Collapse
Affiliation(s)
- Jordi Aragón
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology, Technology Avda. Països Catalans, 16, 43007, Tarragona, Spain.,Departament de Química Organica i Analítica, Universitat Rovira i Virgili, Carrer Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Suyun Sun
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology, Technology Avda. Països Catalans, 16, 43007, Tarragona, Spain.,Departament de Química Organica i Analítica, Universitat Rovira i Virgili, Carrer Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - David Pascual
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology, Technology Avda. Països Catalans, 16, 43007, Tarragona, Spain.,Departament de Química Organica i Analítica, Universitat Rovira i Virgili, Carrer Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Sebastian Jaworski
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology, Technology Avda. Països Catalans, 16, 43007, Tarragona, Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology, Technology Avda. Països Catalans, 16, 43007, Tarragona, Spain.,Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
19
|
Liao LL, Song L, Yan SS, Ye JH, Yu DG. Highly reductive photocatalytic systems in organic synthesis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Yedase GS, Jha AK, Yatham VR. Visible-Light Enabled C(s p3)-C(s p2) Cross-Electrophile Coupling via Synergistic Halogen-Atom Transfer (XAT) and Nickel Catalysis. J Org Chem 2022; 87:5442-5450. [PMID: 35357838 DOI: 10.1021/acs.joc.2c00251] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We herein report the first visible-light-mediated cross-coupling of unactivated alkyl iodides with aryl bromides through synergistic halogen atom transfer (XAT) and nickel catalysis. This simple protocol operates under mild reaction conditions and tolerates a variety of functional groups affording C(sp3)-C(sp2) cross-coupling products in good to moderate yields.
Collapse
Affiliation(s)
- Girish Suresh Yedase
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Avishek Kumar Jha
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| |
Collapse
|
21
|
Aragón J, Sun S, Pascual D, Jaworski S, Lloret‐Fillol J. Photoredox Activation of Inert Alkyl Chlorides for the Reductive Cross‐Coupling with Aromatic Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jordi Aragón
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Technology Avda. Països Catalans, 16 43007 Tarragona Spain
- Departament de Química Organica i Analítica Universitat Rovira i Virgili Carrer Marcel⋅lí Domingo s/n 43007 Tarragona Spain
| | - Suyun Sun
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Technology Avda. Països Catalans, 16 43007 Tarragona Spain
- Departament de Química Organica i Analítica Universitat Rovira i Virgili Carrer Marcel⋅lí Domingo s/n 43007 Tarragona Spain
| | - David Pascual
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Technology Avda. Països Catalans, 16 43007 Tarragona Spain
- Departament de Química Organica i Analítica Universitat Rovira i Virgili Carrer Marcel⋅lí Domingo s/n 43007 Tarragona Spain
| | - Sebastian Jaworski
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Technology Avda. Països Catalans, 16 43007 Tarragona Spain
| | - Julio Lloret‐Fillol
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Technology Avda. Països Catalans, 16 43007 Tarragona Spain
- Institution for Research and Advanced Studies (ICREA) Passeig Lluís Companys, 23 08010 Barcelona Spain
| |
Collapse
|
22
|
Abstract
The fields of C-H functionalization and photoredox catalysis have garnered enormous interest and utility in the past several decades. Many different scientific disciplines have relied on C-H functionalization and photoredox strategies including natural product synthesis, drug discovery, radiolabeling, bioconjugation, materials, and fine chemical synthesis. In this Review, we highlight the use of photoredox catalysis in C-H functionalization reactions. We separate the review into inorganic/organometallic photoredox catalysts and organic-based photoredox catalytic systems. Further subdivision by reaction class─either sp2 or sp3 C-H functionalization─lends perspective and tactical strategies for use of these methods in synthetic applications.
Collapse
Affiliation(s)
- Natalie Holmberg-Douglas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
23
|
Yu D, To WP, Liu Y, Wu LL, You T, Ling J, Che CM. Direct photo-induced reductive Heck cyclization of indoles for the efficient preparation of polycyclic indolinyl compounds. Chem Sci 2021; 12:14050-14058. [PMID: 34760188 PMCID: PMC8565399 DOI: 10.1039/d1sc04258k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
The photo-induced cleavage of C(sp2)-Cl bonds is an appealing synthetic tool in organic synthesis, but usually requires the use of high UV light, photocatalysts and/or photosensitizers. Herein is described a direct photo-induced chloroarene activation with UVA/blue LEDs that can be used in the reductive Heck cyclization of indoles and without the use of a photocatalyst or photosensitizer. The indole compounds examined display room-temperature phosphorescence. The photochemical reaction tolerates a panel of functional groups including esters, alcohols, amides, cyano and alkenes (27 examples, 50-88% yields), and can be used to prepare polycyclic compounds and perform the functionalization of natural product analogues in moderate to good yields. Mechanistic experiments, including time-resolved absorption spectroscopy, are supportive of photo-induced electron transfer between the indole substrate and DIPEA, with the formation of radical intermediates in the photo-induced dearomatization reaction.
Collapse
Affiliation(s)
- Daohong Yu
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou 341000 China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Liang-Liang Wu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Tingjie You
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Jesse Ling
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park New Territories Hong Kong China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research and Innovation Shenzhen Guangdong 518057 China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park New Territories Hong Kong China
| |
Collapse
|
24
|
Pezzetta C, Folli A, Matuszewska O, Murphy D, Davidson RWM, Bonifazi D. peri
‐Xanthenoxanthene (PXX): a Versatile Organic Photocatalyst in Organic Synthesis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cristofer Pezzetta
- School of Chemistry Cardiff University Park Place Cardiff CF10 3AT United Kingdom
- Dr. Reddy's Laboratories (EU) 410 Science Park, Milton Road Cambridge CB4 0PE United Kingdom
| | - Andrea Folli
- School of Chemistry Cardiff University Park Place Cardiff CF10 3AT United Kingdom
| | - Oliwia Matuszewska
- School of Chemistry Cardiff University Park Place Cardiff CF10 3AT United Kingdom
| | - Damien Murphy
- School of Chemistry Cardiff University Park Place Cardiff CF10 3AT United Kingdom
| | - Robert W. M. Davidson
- Dr. Reddy's Laboratories (EU) 410 Science Park, Milton Road Cambridge CB4 0PE United Kingdom
| | - Davide Bonifazi
- School of Chemistry Cardiff University Park Place Cardiff CF10 3AT United Kingdom
- Institute of Organic Chemistry Faculty of Chemistry University of Vienna Währinger Strasse 38 1090 Vienna Austria
| |
Collapse
|
25
|
Yue F, Dong J, Liu Y, Wang Q. Visible-Light-Mediated C-I Difluoroallylation with an α-Aminoalkyl Radical as a Mediator. Org Lett 2021; 23:7306-7310. [PMID: 34494433 DOI: 10.1021/acs.orglett.1c02905] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report a protocol for direct visible-light-mediated C-I difluoroallylation reactions of α-trifluoromethyl arylalkenes with alkyl iodides at room temperature with an α-aminoalkyl radical as a mediator. The protocol permits efficient functionalization of various α-trifluoromethyl arylalkenes with cyclic and acyclic primary, secondary, and tertiary alkyl iodides and is scalable to the gram level. This mild protocol uses an inexpensive mediator and is suitable for late-stage functionalization of complex natural products and drugs.
Collapse
Affiliation(s)
- Fuyang Yue
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
26
|
He J, Yan B, Meng J, Ran M, Zhou Y, Deng J, Li C, Yao Q. Study of Rhodamine‐Based Fluorescent Probes for Organic Radical Intermediates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiaxin He
- Department of Pharmacy Zunyi Medical University 6 Xuefu Road West Zunyi 563000 China
| | - Boyu Yan
- Department of Pharmacy Zunyi Medical University 6 Xuefu Road West Zunyi 563000 China
| | - Jiangtao Meng
- Department of Pharmacy Zunyi Medical University 6 Xuefu Road West Zunyi 563000 China
| | - Maogang Ran
- Department of Pharmacy Zunyi Medical University 6 Xuefu Road West Zunyi 563000 China
| | - Yutong Zhou
- Department of Pharmacy Zunyi Medical University 6 Xuefu Road West Zunyi 563000 China
| | - Jinfei Deng
- Department of Pharmacy Zunyi Medical University 6 Xuefu Road West Zunyi 563000 China
| | - Chao‐Jun Li
- Department of Chemistry McGill University 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| | - Qiuli Yao
- Department of Pharmacy Zunyi Medical University 6 Xuefu Road West Zunyi 563000 China
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources Qinghai Institute of Salt Lakes Chinese Academy of Sciences Xining Qinghai 810008 China
| |
Collapse
|
27
|
Glaser F, Kerzig C, Wenger OS. Sensitization-initiated electron transfer via upconversion: mechanism and photocatalytic applications. Chem Sci 2021; 12:9922-9933. [PMID: 34349964 PMCID: PMC8317647 DOI: 10.1039/d1sc02085d] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Sensitization-initiated electron transfer (SenI-ET) describes a recently discovered photoredox strategy that relies on two consecutive light absorption events, triggering a sequence of energy and electron transfer steps. The cumulative energy input from two visible photons gives access to thermodynamically demanding reactions, which would be unattainable by single excitation with visible light. For this reason, SenI-ET has become a very useful strategy in synthetic photochemistry, but the mechanism has been difficult to clarify due to its complexity. We demonstrate that SenI-ET can operate via sensitized triplet-triplet annihilation upconversion, and we provide the first direct spectroscopic evidence for the catalytically active species. In our system comprised of fac-[Ir(ppy)3] as a light absorber, 2,7-di-tert-butylpyrene as an annihilator, and N,N-dimethylaniline as a sacrificial reductant, all photochemical reaction steps proceed with remarkable rates and efficiencies, and this system is furthermore suitable for photocatalytic aryl dehalogenations, pinacol couplings and detosylation reactions. The insights presented here are relevant for the further rational development of photoredox processes based on multi-photon excitation, and they could have important implications in the greater contexts of synthetic photochemistry and solar energy conversion.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Christoph Kerzig
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
28
|
Wang J, Guo Y, Wang J, Ma J. Investigations on the Photochemical Reaction Mechanisms of Selected Dibenzoylmethane Compounds. J Org Chem 2021; 86:7594-7602. [PMID: 34013727 DOI: 10.1021/acs.joc.1c00647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, combined time-resolved spectroscopies of femtosecond transient absorption, nanosecond transient absorption, and DFT calculations were performed to unravel the photocyclization reaction mechanisms of selected dibenzoylmethane (DBM) derivatives, including 2-chloro-1,3-diphenylpropan-1,3-dione (1a), 2-chloro-1-(3,5-dimethoxyphenyl)-3-phenylpropan-1,3-dione (1b), 2-chloro-2-fluoro-1,3-diphenylpropan-1,3-dione (1c), and 2-chloro-2-fluoro-1,3-di(4-methoxyphenyl)propan-1,3-dione (1d). Photocyclization reaction mechanisms for 1a and 1b are similar, where a C-Cl heterolysis occurs yielding an α-ketocation intermediate, followed by cyclization to generate the cation species. On the other hand, 1c and 1d undergo dechlorination primarily producing a radical species, which further experiences cyclization yielding cyclized radical species. The dominant factor leading to the different reaction mechanisms is the involvement of a fluorine atom bonded at α-C. Due to the meta-effect, the p-methoxy substitution on the benzene ring inhibits the photocyclization reaction and reduces the yield of photocyclization.
Collapse
Affiliation(s)
- Junxiao Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jialin Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jiani Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
29
|
Pallini F, Sangalli E, Sassi M, Roth PMC, Mattiello S, Beverina L. Selective photoredox direct arylations of aryl bromides in water in a microfluidic reactor. Org Biomol Chem 2021; 19:3016-3023. [PMID: 33885555 DOI: 10.1039/d1ob00050k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Carrying out photoredox direct arylation couplings between aryl halides and aryls in aqueous solutions of surfactants enables unprecedented selectivity with respect to the competing dehalogenation process, thanks to the partition coefficient of the selected sacrificial base. The use of a microfluidic reactor dramatically improves the reaction time, without eroding the yields and selectivity. The design of a metal free sensitizer, which also acts as the surfactant, sizeably improves the overall sustainability of arylation reactions and obviates the need for troublesome purification from traces of metal catalysts. The generality of the method is investigated over a range of halides carrying a selection of electron withdrawing and electron donating substituents.
Collapse
Affiliation(s)
- Francesca Pallini
- University of Milano-Bicocca, Department of Materials Science, via R. Cozzi 55, I-20125 Milan, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Targos K, Williams OP, Wickens ZK. Unveiling Potent Photooxidation Behavior of Catalytic Photoreductants. J Am Chem Soc 2021; 143:4125-4132. [PMID: 33724018 DOI: 10.1021/jacs.1c00399] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We describe a photocatalytic system that reveals latent photooxidant behavior from one of the most reducing conventional photoredox catalysts, N-phenylphenothiazine (PTH). This aerobic photochemical reaction engages difficult to oxidize feedstocks, such as benzene, in C(sp2)-N coupling reactions through direct oxidation. Mechanistic studies are consistent with activation of PTH via photooxidation and with Lewis acid cocatalysts scavenging inhibitors inextricably formed in this process.
Collapse
Affiliation(s)
- Karina Targos
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Oliver P Williams
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zachary K Wickens
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
31
|
Teets TS, Wu Y, Kim D. Photophysical Properties and Redox Potentials of Photosensitizers for Organic Photoredox Transformations. Synlett 2021. [DOI: 10.1055/a-1390-9065] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractPhotoredox catalysis has proven to be a powerful tool in synthetic organic chemistry. The rational design of photosensitizers with improved photocatalytic performance constitutes a major advancement in photoredox organic transformations. This review summarizes the fundamental ground-state and excited-state photophysical and electrochemical attributes of molecular photosensitizers, which are important determinants of their photocatalytic reactivity.
Collapse
|
32
|
Yabuta T, Hayashi M, Matsubara R. Photocatalytic Reductive C-O Bond Cleavage of Alkyl Aryl Ethers by Using Carbazole Catalysts with Cesium Carbonate. J Org Chem 2021; 86:2545-2555. [PMID: 33439026 DOI: 10.1021/acs.joc.0c02663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Methods to activate the relatively stable ether C-O bonds and convert them to other functional groups are desirable. One-electron reduction of ethers is a potentially promising route to cleave the C-O bond. However, owing to the highly negative redox potential of alkyl aryl ethers (Ered < -2.6 V vs SCE), this mode of ether C-O bond activation is challenging. Herein, we report the visible-light-induced photocatalytic cleavage of the alkyl aryl ether C-O bond using a carbazole-based organic photocatalyst (PC). Both benzylic and non-benzylic aryl ethers underwent C-O bond cleavage to form the corresponding phenol products. Addition of Cs2CO3 was beneficial, especially in reactions using a N-H carbazole PC. The reaction was proposed to occur via single-electron transfer (SET) from the excited-state carbazole to the substrate ether. Interaction of the N-H carbazole PC with Cs2CO3 via hydrogen bonding exists, which enables a deprotonation-assisted electron-transfer mechanism to operate. In addition, the Lewis acidic Cs cation interacts with the substrate alkyl aryl ether to activate it as an electron acceptor. The high reducing ability of the carbazole combined with the beneficial effects of Cs2CO3 made this otherwise formidable SET event possible.
Collapse
Affiliation(s)
- Tatsushi Yabuta
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Masahiko Hayashi
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| |
Collapse
|
33
|
Shon JH, Kim D, Rathnayake MD, Sittel S, Weaver J, Teets TS. Photoredox catalysis on unactivated substrates with strongly reducing iridium photosensitizers. Chem Sci 2021; 12:4069-4078. [PMID: 34163678 PMCID: PMC8179447 DOI: 10.1039/d0sc06306a] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Photoredox catalysis has emerged as a powerful strategy in synthetic organic chemistry, but substrates that are difficult to reduce either require complex reaction conditions or are not amenable at all to photoredox transformations. In this work, we show that strong bis-cyclometalated iridium photoreductants with electron-rich β-diketiminate (NacNac) ancillary ligands enable high-yielding photoredox transformations of challenging substrates with very simple reaction conditions that require only a single sacrificial reagent. Using blue or green visible-light activation we demonstrate a variety of reactions, which include hydrodehalogenation, cyclization, intramolecular radical addition, and prenylation via radical-mediated pathways, with optimized conditions that only require the photocatalyst and a sacrificial reductant/hydrogen atom donor. Many of these reactions involve organobromide and organochloride substrates which in the past have had limited utility in photoredox catalysis. This work paves the way for the continued expansion of the substrate scope in photoredox catalysis.
Collapse
Affiliation(s)
- Jong-Hwa Shon
- Department of Chemistry, University of Houston 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| | - Dooyoung Kim
- Department of Chemistry, University of Houston 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| | - Manjula D Rathnayake
- Department of Chemistry, Oklahoma State University 107, Physical Science Stillwater OK 74078 USA
| | - Steven Sittel
- Department of Chemistry, University of Houston 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| | - Jimmie Weaver
- Department of Chemistry, Oklahoma State University 107, Physical Science Stillwater OK 74078 USA
| | - Thomas S Teets
- Department of Chemistry, University of Houston 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| |
Collapse
|
34
|
|
35
|
Lockley WJS, Venanzi NAE, Crane GJ. Studies of hydrogen isotope scrambling during the dehalogenation of aromatic chloro-compounds with deuterium gas over palladium catalysts. J Labelled Comp Radiopharm 2020; 63:531-552. [PMID: 32886808 DOI: 10.1002/jlcr.3878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/23/2020] [Accepted: 08/19/2020] [Indexed: 11/06/2022]
Abstract
Catalytic dehalogenation of aromatic halides using isotopic hydrogen gas is an important strategy for labelling pharmaceuticals, biochemicals, environmental agents and so forth. To extend, improve and further understand this process, studies have been carried out on the scrambling of deuterium isotope with protium during the catalytic deuterodehalogenation of model aryl chlorides using deuterium gas and a palladium on carbon catalyst in tetrahydrofuran solution. The degree of scrambling was greatest with electron-rich chloroarene rings. The tetrahydrofuran solvent and the triethylamine base were not the source of the undesired protium; instead, it arose, substantially, from the water content of the catalyst, though other sources of protium may also be present on the catalyst. Replacement of the Pd/C catalyst with one prepared in situ by reduction of palladium trifluoroacetate with deuterium gas and dispersed upon micronised polytetrafluoroethylene led to much reduced scrambling (typically 0-6% compared with up to 40% for palladium on carbon) and to high atom% abundance, regiospecific labelling. The improved catalytic system now enables efficient polydeuteration via the dehalogenation of polyhalogenated precursors, making the procedure viable for the preparation of MS internal standards and, potentially, for high specific activity tritium labelling.
Collapse
Affiliation(s)
- William J S Lockley
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
| | | | - Georgie J Crane
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
36
|
Constantin T, Juliá F, Sheikh NS, Leonori D. A case of chain propagation: α-aminoalkyl radicals as initiators for aryl radical chemistry. Chem Sci 2020; 11:12822-12828. [PMID: 34094477 PMCID: PMC8163300 DOI: 10.1039/d0sc04387g] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The generation of aryl radicals from the corresponding halides by redox chemistry is generally considered a difficult task due to their highly negative reduction potentials. Here we demonstrate that α-aminoalkyl radicals can be used as both initiators and chain-carriers for the radical coupling of aryl halides with pyrrole derivatives, a transformation often employed to evaluate new highly reducing photocatalysts. This mode of reactivity obviates for the use of strong reducing species and was also competent in the formation of sp2 C-P bonds. Mechanistic studies have delineated some of the key features operating that trigger aryl radical generation and also propagate the chain process.
Collapse
Affiliation(s)
- Timothée Constantin
- Department of Chemistry, University of Manchester Manchester M13 9PL UK https://leonoriresearchgroup.com
| | - Fabio Juliá
- Department of Chemistry, University of Manchester Manchester M13 9PL UK https://leonoriresearchgroup.com
| | - Nadeem S Sheikh
- Department of Chemistry, College of Science, King Faisal University P. O. Box 400 Al-Ahsa 31982 Saudi Arabia
| | - Daniele Leonori
- Department of Chemistry, University of Manchester Manchester M13 9PL UK https://leonoriresearchgroup.com
| |
Collapse
|
37
|
Light-driven activation of carbon-halogen bonds by readily available amines for photocatalytic hydrodehalogenation. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63582-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Heredia MD, Guerra WD, Barolo SM, Fornasier SJ, Rossi RA, Budén ME. Transition-Metal-Free and Visible-Light-Mediated Desulfonylation and Dehalogenation Reactions: Hantzsch Ester Anion as Electron and Hydrogen Atom Donor. J Org Chem 2020; 85:13481-13494. [DOI: 10.1021/acs.joc.0c01523] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Micaela D. Heredia
- INFIQC, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Walter D. Guerra
- INFIQC, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Silvia M. Barolo
- INFIQC, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Santiago J. Fornasier
- INFIQC, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Roberto A. Rossi
- INFIQC, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - María E. Budén
- INFIQC, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| |
Collapse
|
39
|
Schreier MR, Pfund B, Guo X, Wenger OS. Photo-triggered hydrogen atom transfer from an iridium hydride complex to unactivated olefins. Chem Sci 2020; 11:8582-8594. [PMID: 34123118 PMCID: PMC8163408 DOI: 10.1039/d0sc01820a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Many photoactive metal complexes can act as electron donors or acceptors upon photoexcitation, but hydrogen atom transfer (HAT) reactivity is rare. We discovered that a typical representative of a widely used class of iridium hydride complexes acts as an H-atom donor to unactivated olefins upon irradiation at 470 nm in the presence of tertiary alkyl amines as sacrificial electron and proton sources. The catalytic hydrogenation of simple olefins served as a test ground to establish this new photo-reactivity of iridium hydrides. Substrates that are very difficult to activate by photoinduced electron transfer were readily hydrogenated, and structure-reactivity relationships established with 12 different olefins are in line with typical HAT reactivity, reflecting the relative stabilities of radical intermediates formed by HAT. Radical clock, H/D isotope labeling, and transient absorption experiments provide further mechanistic insight and corroborate the interpretation of the overall reactivity in terms of photo-triggered hydrogen atom transfer (photo-HAT). The catalytically active species is identified as an Ir(ii) hydride with an IrII-H bond dissociation free energy around 44 kcal mol-1, which is formed after reductive 3MLCT excited-state quenching of the corresponding Ir(iii) hydride, i.e. the actual HAT step occurs on the ground-state potential energy surface. The photo-HAT reactivity presented here represents a conceptually novel approach to photocatalysis with metal complexes, which is fundamentally different from the many prior studies relying on photoinduced electron transfer.
Collapse
Affiliation(s)
- Mirjam R Schreier
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Björn Pfund
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Xingwei Guo
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
40
|
Glaser F, Larsen CB, Kerzig C, Wenger OS. Aryl dechlorination and defluorination with an organic super-photoreductant. Photochem Photobiol Sci 2020; 19:1035-1041. [PMID: 32588869 DOI: 10.1039/d0pp00127a] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Direct excitation of the commercially available super-electron donor tetrakis(dimethylamino)ethylene (TDAE) with light-emitting diodes at 440 or 390 nm provides a stoichiometric reductant that is able to reduce aryl chlorides and fluorides. The method is very simple and requires only TDAE, substrate, and solvent at room temperature. The photoactive excited state of TDAE has a lifetime of 17.3 ns in cyclohexane at room temperature and an oxidation potential of ca.-3.4 V vs. SCE. This makes TDAE one of the strongest photoreductants able to operate on the basis of single excitation with visible photons. Direct substrate activation occurs in benzene, but acetone is reduced by photoexcited TDAE and substrate reduction takes place by a previously unexplored solvent radical anion mechanism. Our work shows that solvent can have a leveling effect on the photochemically available redox power, reminiscent of the pH-leveling effect that solvent has in acid-base chemistry.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Christopher B Larsen
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Christoph Kerzig
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland.
| |
Collapse
|
41
|
Saritha R, Annes SB, Saravanan S, Ramesh S. Carbazole based Electron Donor Acceptor (EDA) catalysis for the synthesis of biaryl and aryl-heteroaryl compounds. Org Biomol Chem 2020; 18:2510-2515. [PMID: 32195523 DOI: 10.1039/d0ob00282h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A highly regioselective, carbazole based Electron Donor Acceptor (EDA) catalyzed synthesis of biaryl and aryl-heteroaryl compounds is described. Various indole and carbazole derivatives were screened for the Homolytic Aromatic Substitution (HAS) reaction. Tetrahydrocarbazole (THC) was very efficient for the HAS transformation and proceeded via a complex formation between diazonium salt and electron rich tetrahydrocarbazole. The UV-Vis spectroscopy technique has been used to confirm the complex formation. The in situ generated EDA complex even in a catalytic amount is found to be efficient for the Single Electron Transfer (SET) process without any photoactivation. Biaryl compounds, 2-phenylfuran, 2-phenylthiophene, and 2-phenylpyrrole and bioactive compounds such as dantrolene and canagliflozin have been synthesized in moderate to excellent yields.
Collapse
Affiliation(s)
- Rajendhiran Saritha
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.
| | - Sesuraj Babiola Annes
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.
| | - Subramanian Saravanan
- Discipline of Inorganic Materials and Catalysis, Central Salt and Marine Chemicals Research Institute (CSMCRI), Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar - 364 002, Gujarat, India
| | - Subburethinam Ramesh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
42
|
Cowper NGW, Chernowsky CP, Williams OP, Wickens ZK. Potent Reductants via Electron-Primed Photoredox Catalysis: Unlocking Aryl Chlorides for Radical Coupling. J Am Chem Soc 2020; 142:2093-2099. [PMID: 31951393 PMCID: PMC7607533 DOI: 10.1021/jacs.9b12328] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We describe a new catalytic strategy to transcend the energetic limitations of visible light by electrochemically priming a photocatalyst prior to excitation. This new catalytic system is able to productively engage aryl chlorides with reduction potentials hundreds of millivolts beyond the potential of Na0 in productive radical coupling reactions. The aryl radicals produced via this strategy can be leveraged for both carbon-carbon and carbon-heteroatom bond-forming reactions. Through direct comparison, we illustrate the reactivity and selectivity advantages of this approach relative to electrolysis and photoredox catalysis.
Collapse
Affiliation(s)
- Nicholas G W Cowper
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Colleen P Chernowsky
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Oliver P Williams
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Zachary K Wickens
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
43
|
Lee DS, Kim CS, Iqbal N, Park GS, Son KS, Cho EJ. Organophotocatalytic Arene Functionalization: C–C and C–B Bond Formation. Org Lett 2019; 21:9950-9953. [DOI: 10.1021/acs.orglett.9b03877] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Da Seul Lee
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chung Soo Kim
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Naila Iqbal
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| | - Gyeong Su Park
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung-sun Son
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
44
|
Photocatalytic activation of alkyl chlorides by assembly-promoted single electron transfer in microheterogeneous solutions. Nat Catal 2019. [DOI: 10.1038/s41929-019-0369-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
45
|
Steiner A, Williams JD, Rincón JA, de Frutos O, Mateos C, Kappe CO. Implementing Hydrogen Atom Transfer (HAT) Catalysis for Rapid and Selective Reductive Photoredox Transformations in Continuous Flow. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900952] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Alexander Steiner
- Center for Continuous Flow Synthesis and Processing (CC FLOW); Research Center Pharmaceutical Engineering GmbH (RCPE); Inffeldgasse 13 8010 Graz Austria
- Institute of Chemistry; University of Graz, NAWI Graz; Heinrichstrasse 28 8010 Graz Austria
| | - Jason D. Williams
- Center for Continuous Flow Synthesis and Processing (CC FLOW); Research Center Pharmaceutical Engineering GmbH (RCPE); Inffeldgasse 13 8010 Graz Austria
- Institute of Chemistry; University of Graz, NAWI Graz; Heinrichstrasse 28 8010 Graz Austria
| | - Juan A Rincón
- Centro de Investigación Lilly S. A.; Avda. de la Industria 30 28108 Alcobendas-Madrid Spain
| | - Oscar de Frutos
- Centro de Investigación Lilly S. A.; Avda. de la Industria 30 28108 Alcobendas-Madrid Spain
| | - Carlos Mateos
- Centro de Investigación Lilly S. A.; Avda. de la Industria 30 28108 Alcobendas-Madrid Spain
| | - C. Oliver Kappe
- Center for Continuous Flow Synthesis and Processing (CC FLOW); Research Center Pharmaceutical Engineering GmbH (RCPE); Inffeldgasse 13 8010 Graz Austria
- Institute of Chemistry; University of Graz, NAWI Graz; Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
46
|
Kohlmann T, Kerzig C, Goez M. Laser-Induced Wurtz-Type Syntheses with a Metal-Free Photoredox Catalytic Source of Hydrated Electrons. Chemistry 2019; 25:9991-9996. [PMID: 31059596 DOI: 10.1002/chem.201901618] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/02/2019] [Indexed: 01/22/2023]
Abstract
Upon irradiation with ns laser pulses at 355 nm, 2-aminoanthracene in SDS micelles readily produces hydrated electrons. These "super-reductants" rapidly attack substrates such as chloro-organics and convert them into carbon-centred radicals through dissociative electron transfer. For a catalytic cycle, the aminoanthracene needs to be restored from its photoionization by-product, the radical cation, by a sacrificial donor. The ascorbate monoanion can only achieve this across the micelle-water interface, but the monoanion of ascorbyl palmitate results in a fully micelle-contained regenerative electron source. The shielding by the micelle in the latter case not only increases the life of the catalyst but also strongly suppresses the interception of the carbon-centred radicals by the hydrogen-donating ascorbate moiety; and in conjunction with the high local concentrations effected by the pulsed laser, termination by radical dimerization thus dominates. We have obtained a complete and consistent picture through monitoring the individual steps and the assembled system by flash photolysis on fast and slow timescales, from microseconds to minutes; and in preparative studies on a variety of substrates, we have achieved up to quantitative dimerization with a turnover on the order of 1 mmol per hour.
Collapse
Affiliation(s)
- Tim Kohlmann
- Martin-Luther-Universität Halle-Wittenberg, Institut für Chemie, Kurt-Mothes-Str. 2, 06120, Halle (Saale), Germany
| | - Christoph Kerzig
- Martin-Luther-Universität Halle-Wittenberg, Institut für Chemie, Kurt-Mothes-Str. 2, 06120, Halle (Saale), Germany.,Present address: Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Martin Goez
- Martin-Luther-Universität Halle-Wittenberg, Institut für Chemie, Kurt-Mothes-Str. 2, 06120, Halle (Saale), Germany
| |
Collapse
|
47
|
|
48
|
Matsubara R, Kaiba T, Nakata A, Yabuta T, Hayashi M, Tsubaki M, Uchino T, Chatani E. 9-Aryl-3-aminocarbazole as an Environment- and Stimuli-Sensitive Fluorogen and Applications in Lipid Droplet Imaging. J Org Chem 2019; 84:5535-5547. [DOI: 10.1021/acs.joc.9b00493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Tomoaki Kaiba
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Akito Nakata
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Tatsushi Yabuta
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Masahiko Hayashi
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Motonari Tsubaki
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Takashi Uchino
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Eri Chatani
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| |
Collapse
|
49
|
Boyington AJ, Seath CP, Zearfoss AM, Xu Z, Jui NT. Catalytic Strategy for Regioselective Arylethylamine Synthesis. J Am Chem Soc 2019; 141:4147-4153. [PMID: 30759339 DOI: 10.1021/jacs.9b01077] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A mild, modular, and practical catalytic system for the synthesis of the highly privileged phenethylamine pharmacophore is reported. Using a unique combination of organic catalysts to promote the transfer of electrons and hydrogen atoms, this system performs direct hydroarylation of vinyl amine derivatives with a wide range of aryl halides (including aryl chlorides). This general and highly chemoselective protocol delivers a broad range of arylethylamine products with complete regiocontrol. The utility of this process is highlighted by its scalability and the modular synthesis of an array of bioactive small molecules.
Collapse
Affiliation(s)
- Allyson J Boyington
- Department of Chemistry and Winship Cancer Institute , Emory University , Atlanta , Georgia 30322 , United States
| | - Ciaran P Seath
- Department of Chemistry and Winship Cancer Institute , Emory University , Atlanta , Georgia 30322 , United States
| | - Avery M Zearfoss
- Department of Chemistry and Winship Cancer Institute , Emory University , Atlanta , Georgia 30322 , United States
| | - Zihao Xu
- Department of Chemistry and Winship Cancer Institute , Emory University , Atlanta , Georgia 30322 , United States
| | - Nathan T Jui
- Department of Chemistry and Winship Cancer Institute , Emory University , Atlanta , Georgia 30322 , United States
| |
Collapse
|
50
|
Schmalzbauer M, Ghosh I, König B. Utilising excited state organic anions for photoredox catalysis: activation of (hetero)aryl chlorides by visible light-absorbing 9-anthrolate anions. Faraday Discuss 2019; 215:364-378. [DOI: 10.1039/c8fd00176f] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A novel photocatalytic concept based on photoexcitation of an organic anionic ground state catalyst for direct C–H (het)arylations using (het)aryl chlorides.
Collapse
Affiliation(s)
- Matthias Schmalzbauer
- Institut für Organische Chemie
- Universität Regensburg
- Universitätsstraße 31
- Regensburg
- Germany
| | - Indrajit Ghosh
- Institut für Organische Chemie
- Universität Regensburg
- Universitätsstraße 31
- Regensburg
- Germany
| | - Burkhard König
- Institut für Organische Chemie
- Universität Regensburg
- Universitätsstraße 31
- Regensburg
- Germany
| |
Collapse
|