1
|
Deng J, Lu H, Ye H, Hai Y, Liu Z, You L. Precise assembly/disassembly of homo-type and hetero-type macrocycles with photoresponsive and non-photoresponsive dynamic covalent bonds. Org Biomol Chem 2025; 23:2498-2509. [PMID: 39917954 DOI: 10.1039/d5ob00094g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Dynamic covalent macrocycles offer the advantage of tunable ring-opening/ring-closure and structural transformation, but their control with precision remains a daunting task due to the labile nature of reversible bonds. Herein we demonstrate the precise formation/scission of covalent macrocycles with varied sizes by contrasting the reactivity, stability, and degradability of light-active and light-inactive dynamic covalent bonds. The incorporation of photoswitchable and non-photoresponsive aldehyde sites into one single dialdehyde component afforded the creation of [1 + 1] type macrocycles with primary diamines of suitable lengths. The manipulation of light and acid/base stimuli allowed on-demand breaking/remaking of macrocycles, achieving the interconversion between macrocyclic and linear skeletons. Moreover, a combination of the dialdehyde, primary diamines, and secondary diamines enabled the construction of hetero-type [2 + 1 + 1'] macrocycles via enhanced discrimination and hierarchical assembly. Light-induced kinetic locking/unlocking of dynamic bonds further afforded macrocycle-to-macrocycle conversion when needed. Through leveraging controllable covalent connection/disconnection, switchable formation/disintegration of mechanically interlocked catenanes was further accomplished. The results described showcase the potential of photoinduced dynamic covalent chemistry for preparing complex architectures and should set the stage for molecular recognition, dynamic assemblies, synthetic motors, and responsive materials.
Collapse
Affiliation(s)
- Junmiao Deng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- College of Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, China
| | - Hanwei Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Yu Hai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Zimu Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- College of Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Riera MB, Salazar MO, Furlan RLE. Multilevel Dynamic System as Molecular Morning-After Timer. Chemistry 2024; 30:e202402130. [PMID: 39356247 DOI: 10.1002/chem.202402130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/03/2024] [Accepted: 10/02/2024] [Indexed: 10/03/2024]
Abstract
Systems chemistry aims to develop molecular systems that display emerging properties arising from their network and absent in their individual constituents. Employing reversible chemistry under thermodynamic control represents a valuable tool for generating dynamic combinatorial libraries of interconverting molecules, which may exhibit intriguing collective behaviour. A simple dynamic combinatorial library was prepared using dithioacetal/thiol/disulfide exchanges. Because of the relative reactivities of these reversible reactions, the library constitutes a two-layer dynamic system with one layer active in an acid medium (thiol/dithioacetal exchange) and one layer active in a basic medium (thiol/disulfide exchange). This property enables the system to respond to momentary changes in acidity of the medium by activating different network regions, channeling some building blocks from one layer to another through shared thiol reagents (nodes). This momentaneous change in wiring affects the final steady state composition of the library, measured the next day, even though the event that caused it vanishes without leaving any residue. Therefore, the final composition of this dynamic system provides information about this transient past perturbation in the environment such as: when it occurred, how long it was, or how intense it was.
Collapse
Affiliation(s)
- Micaela B Riera
- Facultad de Ciencias Bioquímicasy Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - Mario O Salazar
- Facultad de Ciencias Bioquímicasy Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - Ricardo L E Furlan
- Facultad de Ciencias Bioquímicasy Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, 2000, Rosario, Argentina
| |
Collapse
|
3
|
Rivero DS, Pérez-Pérez Y, Perretti MD, Santos T, Scoccia J, Tejedor D, Carrillo R. Kinetic Control of Complexity in Multiple Dynamic Libraries. Angew Chem Int Ed Engl 2024; 63:e202406654. [PMID: 38660925 DOI: 10.1002/anie.202406654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Multiple dynamic libraries of compounds are generated when more than one reversible reaction comes into play. Commonly, two or more orthogonal reversible reactions are used, leading to non-communicating dynamic libraries which share no building blocks. Only a few examples of communicating libraries have been reported, and in all those cases, building blocks are reversibly exchanged from one library to the other, constituting an antiparallel dynamic covalent system. Herein we report that communication between two different dynamic libraries through an irreversible process is also possible. Indeed, alkyl amines cancel the dynamic regime on the nucleophilic substitution of tetrazines, generating kinetically inert compounds. Interestingly, such amine can be part of another dynamic library, an imine-amine exchange. Thus, both libraries are interconnected with each other by an irreversible process which leads to kinetically inert structures that contain parts from both libraries, causing a collapse of the complexity. Additionally, a latent irreversible intercommunication could be developed. In such a way, a stable molecular system with specific host-guest and fluorescence properties, could be irreversibly transformed when the right stimulus was applied, triggering the cancellation of the original supramolecular and luminescent properties and the emergence of new ones.
Collapse
Affiliation(s)
- David S Rivero
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - Yaiza Pérez-Pérez
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - Marcelle D Perretti
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - Tanausú Santos
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006, Logroño, Spain
| | - Jimena Scoccia
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - David Tejedor
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - Romen Carrillo
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| |
Collapse
|
4
|
Yin C, Ye H, Hai Y, Zou H, You L. Aromatic-Carbonyl Interactions as an Emerging Type of Non-Covalent Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310337. [PMID: 38561959 PMCID: PMC11165483 DOI: 10.1002/advs.202310337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/23/2024] [Indexed: 04/04/2024]
Abstract
Aromatic-carbonyl (Ar···C═O) interactions, attractive interactions between the arene plane and the carbon atom of carbonyl, are in the infancy as one type of new supramolecular bonding forces. Here the study and functionalization of aromatic-carbonyl interactions in solution is reported. A combination of aromatic-carbonyl interactions and dynamic covalent chemistry provided a versatile avenue. The stabilizing role and mechanism of arene-aldehyde/imine interactions are elucidated through crystal structures, NMR studies, and computational evidence. The movement of imine exchange equilibria further allowed the quantification of the interplay between arene-aldehyde/imine interactions and dynamic imine chemistry, with solvent effects offering another handle and matching the electrostatic feature of the interactions. Moreover, arene-aldehyde/imine interactions enabled the reversal of kinetic and thermodynamic selectivity and sorting of dynamic covalent libraries. To show the functional utility diverse modulation of fluorescence signals is realized with arene-aldehyde/imine interactions. The results should find applications in many aspects, including molecular recognition, assemblies, catalysis, and intelligent materials.
Collapse
Affiliation(s)
- Chaowei Yin
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Hebo Ye
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Yu Hai
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Hanxun Zou
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Lei You
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| |
Collapse
|
5
|
Lv Y, Ye H, You L. Multiple control of azoquinoline based molecular photoswitches. Chem Sci 2024; 15:3290-3299. [PMID: 38425524 PMCID: PMC10901508 DOI: 10.1039/d3sc05879d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
Multi-addressable molecular switches with high sophistication are creating intensive interest, but are challenging to control. Herein, we incorporated ring-chain dynamic covalent sites into azoquinoline scaffolds for the construction of multi-responsive and multi-state switching systems. The manipulation of ring-chain equilibrium by acid/base and dynamic covalent reactions with primary/secondary amines allowed the regulation of E/Z photoisomerization. Moreover, the carboxyl and quinoline motifs provided recognition handles for the chelation of metal ions and turning off photoswitching, with otherwise inaccessible Z-isomer complexes obtained via the change of stimulation sequence. Particularly, the distinct metal binding behaviors of primary amine and secondary amine products offered a facile way for modulating E/Z switching and dynamic covalent reactivity. As a result, multiple control of azoarene photoswitches was accomplished, including light, pH, metal ions, and amine nucleophiles, with interplay between diverse stimuli further enabling addressable multi-state switching within reaction networks. The underlying structural and mechanistic insights were elucidated, paving the way for the creation of complex switching systems, molecular assemblies, and intelligent materials.
Collapse
Affiliation(s)
- Youming Lv
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 China
| |
Collapse
|
6
|
Karner C, Bianchi E. Anisotropic functionalized platelets: percolation, porosity and network properties. NANOSCALE ADVANCES 2024; 6:443-457. [PMID: 38235098 PMCID: PMC10790971 DOI: 10.1039/d3na00621b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024]
Abstract
Anisotropic functionalized platelets are able to model the assembly behaviour of molecular systems in two dimensions thanks to the unique combination of steric and bonding constraints. The assembly scenarios can vary from open to close-packed crystals, finite clusters and chains, according to the features of the imposed constraints. In this work, we focus on the assembly of equilibrium networks. These networks can be seen as disordered, porous monolayers and can be of interest for instance in nano-filtration and optical applications. We investigate the formation and properties of two dimensional networks from shape anisotropic colloids functionalized with four patches. We characterize the connectivity properties, the typical local bonding motives, as well as the geometric features of the emerging networks for a large variety of different systems. Our results show that networks of shape anisotropic colloids assemble into highly versatile network topologies, that may be utilized for applications at the nanoscale.
Collapse
Affiliation(s)
- Carina Karner
- Institut für Theoretische Physik, TU Wien Wiedner Hauptstraße 8-10 A-1040 Wien Austria
| | - Emanuela Bianchi
- Institut für Theoretische Physik, TU Wien Wiedner Hauptstraße 8-10 A-1040 Wien Austria
- CNR-ISC, Uos Sapienza Piazzale A. Moro 2 00185 Roma Italy
| |
Collapse
|
7
|
You L. Dual reactivity based dynamic covalent chemistry: mechanisms and applications. Chem Commun (Camb) 2023; 59:12943-12958. [PMID: 37772969 DOI: 10.1039/d3cc04022d] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Dynamic covalent chemistry (DCC) focuses on the reversible formation, breakage, and exchange of covalent bonds and assemblies, setting a bridge between irreversible organic synthesis and supramolecular chemistry and finding wide utility. In order to enhance structural and functional diversity and complexity, different types of dynamic covalent reactions (DCRs) are placed in one vessel, encompassing orthogonal DCC without crosstalk and communicating DCC with a shared reactive functional group. As a means of adding tautomers, widespread in chemistry, to interconnected DCRs and combining the features of orthogonal and communicating DCRs, a concept of dual reactivity based DCC and underlying structural and mechanistic insights are summarized. The manipulation of the distinct reactivity of structurally diverse ring-chain tautomers allows selective activation and switching of reaction pathways and corresponding DCRs (C-N, C-O, and C-S) and assemblies. The coupling with photoswitches further enables light-mediated formation and scission of multiple types of reversible covalent bonds. To showcase the capability of dual reactivity based DCC, the versatile applications in dynamic polymers and luminescent materials are presented, paving the way for future functionalization studies.
Collapse
Affiliation(s)
- Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
8
|
Borodin O, Shchukin Y, Schmid J, von Delius M. Anion-assisted amidinium exchange and metathesis. Chem Commun (Camb) 2022; 58:10178-10181. [PMID: 35997205 PMCID: PMC9469691 DOI: 10.1039/d2cc03425e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
Dynamic covalent chemistry has become an invaluable tool for the design and preparation of adaptable yet robust molecular systems. Herein we explore the scope of a largely overlooked dynamic covalent reaction - amidinium exchange - and report on conditions that allow formal amidinium metathesis reactions.
Collapse
Affiliation(s)
- Oleg Borodin
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Yevhenii Shchukin
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Jonas Schmid
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
9
|
Qin S, Zou H, Hai Y, You L. Aggregation-induced emission luminogens and tunable multicolor polymer networks modulated by dynamic covalent chemistry. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Li Z, Zhang L, Zhou Y, Zha D, Hai Y, You L. Dynamic Covalent Reactions Controlled by Ring‐Chain Tautomerism of 2‐Formylbenzoic Acid. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ziyi Li
- College of Chemistry and Material Science Fujian Normal University Fuzhou Fujian 350007 China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Ling Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yuntao Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Daijun Zha
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yu Hai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lei You
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| |
Collapse
|
11
|
Jiang G, Hai Y, Ye H, You L. Dynamic Covalent Chemistry Constrained Diphenylethenes: Control over Reactivity and Luminescence in both Solution and Solid State. Org Chem Front 2022. [DOI: 10.1039/d2qo00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diarylethenes (DAEs) are an important class of building blocks in chemistry and materials science, and hence, their modulation and functionalization are of critical significance. Here we demonstrate a general strategy...
Collapse
|
12
|
Hai Y, Ye H, Li Z, Zou H, Lu H, You L. Light-Induced Formation/Scission of C-N, C-O, and C-S Bonds Enables Switchable Stability/Degradability in Covalent Systems. J Am Chem Soc 2021; 143:20368-20376. [PMID: 34797658 DOI: 10.1021/jacs.1c09958] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The manipulation of covalent bonds could be directed toward degradable, recyclable, and sustainable materials. However, there is an intrinsic conflict between properties of stability and degradability. Here we report light-controlled formation/scission of three types of covalent bonds (C-N, C-O, and C-S) through photoswitching between equilibrium and nonequilibrium states of dynamic covalent systems, achieving dual benefits of photoaddressable stability and cleavability. The photocyclization of dithienylethene fused aldehyde ring-chain tautomers turns on the reactivity, incorporating/releasing amines, alcohols, and thiols reversibly with high efficiency, respectively. Upon photocycloreversion the system is shifted to kinetically locked out-of-equilibrium form, enabling remarkable robustness of covalent assemblies. Reaction coupling allows remote and directional control of a diverse range of equilibria and further broadens the scope. Through locking and unlocking covalent linkages with light when needed, the utility is demonstrated with capture/release of bioactive molecules, modification of surfaces, and creation of polymers exhibiting tailored stability and degradability/recyclability. The versatile toolbox for photoswitchable dynamic covalent reactions to toggle matters on and off should be appealing to many endeavors.
Collapse
Affiliation(s)
- Yu Hai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Ziyi Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hanxun Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hanwei Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
13
|
Gyűjtő I, Porcs-Makkay M, Szabó G, Kelemen Z, Pusztai G, Tóth G, Dancsó A, Halász J, Simig G, Volk B, Nyulászi L. Basicity-Tuned Reactivity: diaza-[1,2]-Wittig versus diaza-[1,3]-Wittig Rearrangements of 3,4-Dihydro-2 H-1,2,3-benzothiadiazine 1,1-Dioxides. J Org Chem 2021; 86:1685-1700. [PMID: 33382258 PMCID: PMC8021225 DOI: 10.1021/acs.joc.0c02512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The base-induced (t-BuOK) rearrangement reactions
of 3,4-dihydro-2H-1,2,3-benzothiadiazine 1,1-dioxides
result in a ring opening along the N–N bond, followed by ring
closure with the formation of new C–N bonds. The position of
the newly formed C–N bond can selectively be tuned by the amount
of the base, providing access to new, pharmacologically interesting
ring systems with high yield. While with 2 equiv of t-BuOK 1,2-benzisothiazoles can be obtained in a diaza-[1,2]-Wittig reaction, with 6 equiv of the base 1,2-benzothiazine
1,1-dioxides can be prepared in most cases as the main product, in
a diaza-[1,3]-Wittig reaction. DFT calculations and
detailed NMR studies clarified the mechanism, with a mono- or dianionic
key intermediate, depending on the amount of the reactant base. Also,
the role of an enamide intermediate formed during the workup of the
highly basic (6 equiv of base) reaction was clarified. The substrate
scope of the reaction was also explored in detail.
Collapse
Affiliation(s)
- Imre Gyűjtő
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest, Hungary.,Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, and MTA-BME Computation Driven Chemistry Research Group, Szt. Gellért tér 4, H-1111 Budapest, Hungary
| | - Márta Porcs-Makkay
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest, Hungary
| | - Gergő Szabó
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, and MTA-BME Computation Driven Chemistry Research Group, Szt. Gellért tér 4, H-1111 Budapest, Hungary
| | - Zsolt Kelemen
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, and MTA-BME Computation Driven Chemistry Research Group, Szt. Gellért tér 4, H-1111 Budapest, Hungary
| | - Gyöngyvér Pusztai
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest, Hungary
| | - Gábor Tóth
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest, Hungary.,Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, and MTA-BME Computation Driven Chemistry Research Group, Szt. Gellért tér 4, H-1111 Budapest, Hungary
| | - András Dancsó
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest, Hungary
| | - Judit Halász
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest, Hungary
| | - Gyula Simig
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest, Hungary
| | - Balázs Volk
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest, Hungary
| | - László Nyulászi
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, and MTA-BME Computation Driven Chemistry Research Group, Szt. Gellért tér 4, H-1111 Budapest, Hungary
| |
Collapse
|
14
|
Sattar F, Feng Z, Zou H, Ye H, Zhang Y, You L. Dynamic covalent bond constrained ureas for multimode fluorescence switching, thermally induced emission, and chemical signaling cascades. Org Chem Front 2021. [DOI: 10.1039/d1qo00500f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A combination of organic ureas and dynamic covalent chemistry was demonstrated for multistate switching, thermally induced fluorescence, and signaling cascades.
Collapse
Affiliation(s)
- Fazli Sattar
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Zelin Feng
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Hanxun Zou
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Yi Zhang
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan
- China
| | - Lei You
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| |
Collapse
|
15
|
Ciou JM, Zhu HF, Chang CW, Chen JY, Lin YF. Physical organic studies and dynamic covalent chemistry of picolyl heterocyclic amino aminals. RSC Adv 2020; 10:40421-40427. [PMID: 35520848 PMCID: PMC9057465 DOI: 10.1039/d0ra08527h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/30/2020] [Indexed: 12/03/2022] Open
Abstract
A dynamic covalent system of the picolyl heterocyclic amino aminals has been studied. The aminals are characterized as a metastable species and easily switch to other forms via external stimuli. The solvent, temperature, acid-base and substituent effects have been examined to evaluate the dynamic covalent system. The results reveal that a more polar solvent, a lower temperature, basic conditions and an electron-withdrawing moiety contribute to the stabilities of aminals. The existence of the n → π* interaction between acetonitrile and the C[double bond, length as m-dash]N moiety makes the N-pyrimidyl imine (4c and 4d) yield higher in CD3CN. In a similar fashion, all aminals tend to convert to the corresponding hemiaminal ethers in a methanol environment. According to these findings, we successfully synthesized the following species: (a) N-2-picolylpyrimidin-2-amine 6c obtained by reduction using acetonitrile as the specific solvent; (b) a picolyl aromatic amino aminal 3e prepared from 2-pyridinecarboxaldehyde and the electron withdrawing 2-methoxy-5-nitroaniline.
Collapse
Affiliation(s)
- Ji-Ming Ciou
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University 100 Shi-Chuan 1st Rd., San-Ming Dist. Kaohsiung 80708 Taiwan
| | - Hong-Feng Zhu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University Kaohsiung 80708 Taiwan
| | - Chia-Wen Chang
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University 100 Shi-Chuan 1st Rd., San-Ming Dist. Kaohsiung 80708 Taiwan
| | - Jing-Yun Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University 100 Shi-Chuan 1st Rd., San-Ming Dist. Kaohsiung 80708 Taiwan
| | - Ya-Fan Lin
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University 100 Shi-Chuan 1st Rd., San-Ming Dist. Kaohsiung 80708 Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University Kaohsiung 80708 Taiwan
| |
Collapse
|
16
|
Mao J, Hai Y, Ye H, You L. Adaptive Covalent Networks Enabled by Dual Reactivity: The Evolution of Reversible Covalent Bonds, Their Molecular Assemblies, and Guest Recognition. J Org Chem 2020; 85:5351-5361. [PMID: 32250630 DOI: 10.1021/acs.joc.0c00051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adaptive chemistry allows transformation and selection within molecular networks, and adaptive systems composed of different types of dynamic covalent reactions (DCRs) are challenging. Herein, we demonstrate dual reactivity-based covalent networks encompassing the regulation of and switching between C-N- and C-S-based reversible covalent assemblies. The creation and exchange of C-N- or C-S-derived assemblies exhibiting diverse architectures, including linear structures, macrocycles, and cages, were achieved. The shift of reactivity then permitted the interconversion between C-N- and C-S-containing assemblies. Moreover, the adaption of intramolecular and intermolecular scaffolds was feasible via linker design. The latent hemiaminal chirality center offered a pathway for the induction of chirality within assemblies. Finally, switchable structural change and controlled extraction of ions were realized with Hg2+ as a guest for macrocycles. The remarkable complexity of networks described herein could open the door for the utility in sophisticated functional systems.
Collapse
Affiliation(s)
- Jialin Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Hai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Jin Q, Wang F, Chen S, Zhou L, Jiang H, Zhang L, Liu M. Circularly Polarized Luminescence of Aluminum Complexes for Chiral Sensing of Amino Acid and Amino Alcohol. Chem Asian J 2019; 15:319-324. [PMID: 31825169 DOI: 10.1002/asia.201901480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/06/2019] [Indexed: 11/06/2022]
Abstract
Determination of the absolute configuration (AC) of chiral molecules is a key issue in many fields related to chirality such as drug development, the asymmetric reaction screening, and the structure determination of natural compounds. Although various methods, such as X-ray crystallography and NMR spectroscopy, are used to determine the AC, a simple and cheap alternative method is always anticipated. So far, electronic circular dichroism (ECD) spectroscopy has been widely used to ascertain the AC and enantiomeric excess (ee) values by applying appropriate organic probes. Here, circularly polarized luminescence (CPL) spectroscopy was applied to determine the AC and ee values of a series of amino acid and amino alcohol. The measurements were conducted by mixing the amino acids or amino alcohols with an achiral 1-hydroxy-2-naphthaldehyde. Upon in situ formation of the Schiff base complexes, the system showed emission enhancement and CPL in the presence of Al3+ , whose intensity and sign can be used to assign the chiral sense of the amino acids and amino alcohols. The authenticity of the method was further compared with the established CD spectroscopy, revealing that CPL spectra of formed Al3+ complex were effective to determine the AC of chiral species.
Collapse
Affiliation(s)
- Qingxian Jin
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450002, P. R. China
| | - Fulin Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450002, P. R. China.,Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shuyu Chen
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450002, P. R. China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450002, P. R. China
| | - Hejin Jiang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li Zhang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
18
|
Zou H, Hai Y, Ye H, You L. Dynamic Covalent Switches and Communicating Networks for Tunable Multicolor Luminescent Systems and Vapor-Responsive Materials. J Am Chem Soc 2019; 141:16344-16353. [PMID: 31547653 DOI: 10.1021/jacs.9b07175] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molecular switches are an intensive area of research, and in particular, the control of multistate switching is challenging. Herein we introduce a general and versatile strategy of dynamic covalent switches and communicating networks, wherein distinct states of reversible covalent systems can induce addressable fluorescence switching. The regulation of intramolecular ring/chain equilibrium, intermolecular dynamic covalent reactions (DCRs) with amines, and both permitted the activation of optical switches. The variation in electron-withdrawing competition between the fluorophore and 2-formylbenzenesulfonyl unit afforded diverse signaling patterns. The combination of switches in situ further enabled the creation of communicating networks for multistate color switching, including white emission, through the delicate control of DCRs in complex mixtures. Finally, reversible and recyclable multiresponsive luminescent materials were achieved with molecular networks on the solid support, allowing visualization of different types of vapors and quantification of primary amine vapors with high sensitivity and wide detection range. The results reported herein should be appealing for future studies of dynamic assemblies, molecular sensing, intelligent materials, and biological labeling.
Collapse
Affiliation(s)
- Hanxun Zou
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yu Hai
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , China
| | - Lei You
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
19
|
Martinez-Amezaga M, Orrillo AG, Furlan RLE. Engineering multilayer chemical networks. Chem Sci 2019; 10:8338-8347. [PMID: 31803411 PMCID: PMC6844274 DOI: 10.1039/c9sc02166c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/28/2019] [Indexed: 12/19/2022] Open
Abstract
Dynamic multilevel systems emerged in the last few years as new platforms to study thermodynamic systems. In this work, unprecedented fully communicated three-level systems are studied. First, different conditions were screened to selectively activate thiol/dithioacetal, thiol/thioester, and thiol/disulfide exchanges, individually or in pairs. Some of those conditions were applied, sequentially, to build multilayer dynamic systems wherein information, in the form of relative amounts of building blocks, can be directionally transmitted between different exchange pools. As far as we know, this is the first report of one synthetic dynamic chemical system where relationships between layers can be changed through network operations.
Collapse
Affiliation(s)
- Maitena Martinez-Amezaga
- Farmacognosia , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario - CONICET , Suipacha 531 , Rosario , S2002SLRK , Argentina .
| | - A Gastón Orrillo
- Farmacognosia , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario - CONICET , Suipacha 531 , Rosario , S2002SLRK , Argentina .
| | - Ricardo L E Furlan
- Farmacognosia , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario - CONICET , Suipacha 531 , Rosario , S2002SLRK , Argentina .
| |
Collapse
|
20
|
Zheng H, Ni C, Chen H, Zha D, Hai Y, Ye H, You L. Regulation of Axial Chirality through Dynamic Covalent Bond Constrained Biaryls. ACS OMEGA 2019; 4:10273-10278. [PMID: 31460119 PMCID: PMC6648723 DOI: 10.1021/acsomega.9b01273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/24/2019] [Indexed: 06/10/2023]
Abstract
A strategy of dynamic covalent chemistry within constrained biaryls was developed for the modulation of axial chirality. The ring fusion partners of amide and aldehyde allowed the manipulation of ring/chain equilibrium and chirality transfer within cyclic diastereomeric hemiaminal. Dynamic covalent reactions (DCRs) with alcohols, thiols, and secondary amines further enabled the reversal of chirality relay and thereby regulation of axial chirality. Moreover, a combination of NMR, X-ray, and density functional theory results shed light on the structural basis of chirality transfer, exhibiting modest to excellent diastereoselectivity under thermodynamic control. The critical role of the amide unit in the modulation of axial chirality was also corroborated. Finally, the chiroptical signal was controlled through changing solvents, DCRs, and stimuli-responsive switching of DCRs.
Collapse
Affiliation(s)
- Hao Zheng
- State
Key Laboratory of Structural
Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College
of Chemistry and Material Science, Fujian
Normal University, Fuzhou 350007, China
| | - Cailing Ni
- State
Key Laboratory of Structural
Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Chen
- State
Key Laboratory of Structural
Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Daijun Zha
- State
Key Laboratory of Structural
Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yu Hai
- State
Key Laboratory of Structural
Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hebo Ye
- State
Key Laboratory of Structural
Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei You
- State
Key Laboratory of Structural
Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Maula TA, Hatch HW, Shen VK, Rangarajan S, Mittal J. Designing Molecular Building Blocks for the Self-assembly of Complex Porous Networks. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2019; 4:10.1039/c9me00006b. [PMID: 33282339 PMCID: PMC7712629 DOI: 10.1039/c9me00006b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The creation of molecular or colloidal building blocks which can self-assemble into complex, ordered porous structures has been long sought-after, and so are the guiding principles behind this creation. The pursuit of this goal has led to the creation of novel classes of materials like metal organic frameworks (MOFs) and covalent organic frameworks (COFs). In theory, a tremendous number of structures can be formed by these materials due to the variety of geometries available to their building blocks. However, most realized crystal structures tend to be simple or homoporous and typically assemble from building blocks with high degrees of symmetry. Building blocks with low degrees of symmetry suitable for assembly into the more complex structures tend to assemble into polymorphous or disordered structures instead. In this work, we use Monte Carlo simulations of patchy vertex-like building blocks to show how the addition of chemical specificity via orthogonally reacting functional sites can allow vertex-like building blocks with even asymmetric geometries to self-assemble into ordered crystallites of various complex structures. In addition to demonstrating the utility of such a strategy in creating ordered, heteroporous structures, we also demonstrate that it can be used as a means for tuning specific features of the crystal structure, accomplishing such aims as the control of relative pore sizes. We also discuss heuristics for properly designing molecules so that they can assemble into target structures.
Collapse
Affiliation(s)
- T Ann Maula
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
| | - Harold W Hatch
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Vincent K Shen
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Srinivas Rangarajan
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
| |
Collapse
|
22
|
McConnell AJ, Haynes CJE, Grommet AB, Aitchison CM, Guilleme J, Mikutis S, Nitschke JR. Orthogonal Stimuli Trigger Self-Assembly and Phase Transfer of Fe II4L 4 Cages and Cargoes. J Am Chem Soc 2018; 140:16952-16956. [PMID: 30465601 DOI: 10.1021/jacs.8b11324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two differently protected aldehydes, A and B, were demonstrated to deprotect selectively through the application of light and heat, respectively. In the presence of iron(II) and a triamine, two distinct FeII4L4 cages, 1 and 2, were thus observed to form from the deprotected A and B, respectively. The alkyl tails of B and 2 render them preferentially soluble in cyclopentane, whereas A and 1 remain in acetonitrile. The stimulus applied (either light or heat) thus determines the outcome of self-assembly and dictates whether the cage and its ferrocene cargo remain in acetonitrile, or transport into cyclopentane. Cage self-assembly and cargo transport between phases can in this fashion be programmed using orthogonal stimuli.
Collapse
Affiliation(s)
- Anna J McConnell
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom.,Otto Diels Institute of Organic Chemistry, Kiel University , Otto-Hahn-Platz 4 , Kiel D-24098 , Germany
| | - Cally J E Haynes
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Angela B Grommet
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Catherine M Aitchison
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Julia Guilleme
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Sigitas Mikutis
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Jonathan R Nitschke
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| |
Collapse
|
23
|
Orrillo AG, Escalante AM, Martinez-Amezaga M, Cabezudo I, Furlan RLE. Molecular Networks in Dynamic Multilevel Systems. Chemistry 2018; 25:1118-1127. [DOI: 10.1002/chem.201804143] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/17/2018] [Indexed: 11/07/2022]
Affiliation(s)
- A. Gastón Orrillo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| | - Andrea M. Escalante
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| | - Maitena Martinez-Amezaga
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| | - Ignacio Cabezudo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| | - Ricardo L. E. Furlan
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| |
Collapse
|