1
|
Han XN, Long YJ, Guo WC, Han Y, Chen CF. One-step Macrocycle-to-Macrocycle Conversion Towards Two New Macrocyclic Arenes with Different Structures and Properties. Chemistry 2025; 31:e202403630. [PMID: 39532672 DOI: 10.1002/chem.202403630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/24/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Two new macrocyclic arenes H1 and H2 were conveniently synthesized by the one-step reaction of carboxylic acid substituted octopus[3]arene. It was found that H1 was composed of three ethenoanthracene subunits with a rigid hexagonal structure and H2 contained two ethenoanthracene subunits and one anthracene subunit with a rigid house-shaped structure. Among them, H2 exhibited strong blue fluorescence due to the existence of an anthracene subunit. Moreover, both H1 and H2 showed large and electron-rich cavities, which enable them to effectively complex different nitrogen-containing heterocyclic salt guests in solution and the solid state. It was further found that H2 exhibited stronger complexation towards the tested guests than H1 probably due to the stronger charge-transfer interactions between H2 and the guests.
Collapse
Affiliation(s)
- Xiao-Ni Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institution Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu-Jie Long
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institution Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Chen Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institution Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institution Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institution Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Du CB, Long YJ, Han XN, Han Y, Chen CF. Recent advances in novel chiral macrocyclic arenes. Chem Commun (Camb) 2024; 60:13492-13506. [PMID: 39466106 DOI: 10.1039/d4cc05084c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chiral macrocyclic arenes possess confined three-dimensional asymmetric cavities, electron-rich structures, chiral luminescence properties and excellent enantioselective recognition properties and have become a frontier and hotspot of macrocyclic chemistry and supramolecular chemistry. In recent years, there has been growing interest in the development of novel chiral macrocyclic arenes, which have found applications in various research areas. In this review, the construction, properties and functional applications of novel chiral macrocyclic arenes in enantioselective recognition, chiral sorting and construction of chiral luminescent materials according to their chiral types, including central, axial, planar, and inherent chiralities, are summarized. It is expected that this review will be helpful for research on supramolecular chemistry and for promoting the development of synthetic chemistry, materials chemistry and biochemistry.
Collapse
Affiliation(s)
- Cheng-Bin Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Jie Long
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Ni Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Han XN, Han Y, Chen CF. Recent advances in the synthesis and applications of macrocyclic arenes. Chem Soc Rev 2023; 52:3265-3298. [PMID: 37083011 DOI: 10.1039/d3cs00002h] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Macrocyclic arenes including calixarenes, resorcinarenes, cyclotriveratrylene, pillararenes and so on have emerged as highly attractive synthetic macrocyclic hosts due to their unique structures, facile functionalization, and broad range of applications. In recent years, there has been growing interest in the development of novel macrocyclic arenes composed of various aromatic building blocks bridged by methylene groups, which have found applications in various research areas. Consequently, the development of novel macrocyclic arenes has become a frontier and hot topic in supramolecular and macrocyclic chemistry. In this review, we feature the recent advances in the synthesis and applications of novel macrocyclic arenes that have emerged in the last decade. The general synthetic strategies employed for these macrocyclic arenes are systematically summarized, and their wide applications in molecular recognition and assemblies, molecular machines, biomedical science and functional materials are highlighted.
Collapse
Affiliation(s)
- Xiao-Ni Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Du XS, Han Y, Chen CF. Helic[6]arene-Based Chiral Pseudo[1]rotaxanes and [1]Rotaxanes. Chemistry 2021; 28:e202104024. [PMID: 34821427 DOI: 10.1002/chem.202104024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 01/23/2023]
Abstract
Chiral pseudo[1]rotaxanes and [1]rotaxanes constructed from macrocyclic arenes still remain a big challenge mainly owing to the lack of such chiral macrocycles. In this work, a new system of chiral pseudo[1]rotaxanes formed by self-inclusion of helic[6]arene containing amide linked with the terminal tertiary amines was first discovered. Based on an atom-economic stopping strategy, a pair of chiral [1]rotaxanes were conveniently obtained in almost quantitative yields by blocking the pseudo[1]rotaxanes with monobenzyl bromide of tetraphenylethene. The structures of pseudo[1]rotaxanes and [1]rotaxanes were characterized by 2D NMR spectra in solution, combined with DFT calculations. The photophysical properties further revealed the efficient chirality transfer of helic[6]arene to the tetraphenylethene moiety, compared to their unthreaded chiral isomers. The discovery of the chiral pseudo[1]rotaxanes allows for a wide and available synthesis of chiral [1]rotaxanes, and also opening a new avenue to the design of chiral supramolecular materials.
Collapse
Affiliation(s)
- Xu-Sheng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Gu MJ, Wang YF, Han Y, Chen CF. Recent advances on triptycene derivatives in supramolecular and materials chemistry. Org Biomol Chem 2021; 19:10047-10067. [PMID: 34751696 DOI: 10.1039/d1ob01818c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Triptycene derivatives, a type of specific aromatic compound, have been attracting much attention in many research areas. Over the past several years, triptycene and its derivatives have been described to be useful and efficient building blocks for the design and synthesis of novel supramolecular acceptors, porous materials and luminescent materials with specific structures and properties. In this review, recent researches on triptycene derivatives in supramolecular and materials chemistry are summarized. Especially, the construction of a new type of macrocyclic arenes and organic cages with triptycene and its derivatives as building blocks are focused on, and their applications in molecular recognition, self-assembly and gas selective sorption are highlighted. Moreover, the applications of triptycene and its derivatives in porous organic materials and thermally activated delayed fluorescence (TADF) materials are also discussed.
Collapse
Affiliation(s)
- Meng-Jie Gu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin-Feng Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Khan MN, Wirth T. Chiral Triptycenes: Concepts, Progress and Prospects. Chemistry 2021; 27:7059-7068. [PMID: 33433031 PMCID: PMC8248085 DOI: 10.1002/chem.202005317] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/27/2020] [Indexed: 02/02/2023]
Abstract
Triptycenes have been established as unique scaffolds because of their backbone π-structure with a propeller-like shape and saddle-like cavities. They are some of the key organic molecules that have been extensively studied in polymer chemistry, in supramolecular chemistry and in material science. Triptycenes become chiral molecules when substituents are unsymmetrically attached in at least two of their different aromatic rings. This Minireview highlights the chirality of triptycenes from basics to an advanced stage for the development of functional molecules.
Collapse
Affiliation(s)
- Md. Nasim Khan
- School of ChemistryCardiff UniversityPark Place, Main BuildingCardiffCF10 3ATUK
| | - Thomas Wirth
- School of ChemistryCardiff UniversityPark Place, Main BuildingCardiffCF10 3ATUK
| |
Collapse
|
7
|
Li J, Han XN, Zhou HY, Han Y, Chen CF. Helic[1]triptycene[3]arene: Synthesis, Complexation, and Formation of [2]Rotaxane Shuttle. J Org Chem 2020; 85:11465-11474. [PMID: 32791824 DOI: 10.1021/acs.joc.0c01558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new macrocyclic arene, helic[1]triptycene[3]arene H, was conveniently synthesized in 37% yield by a one-pot reaction starting from 2,6-dimethoxyl-3,7-dihydroxymethyltriptycene. Macrocycle H showed fixed conformation in solution and could form 1:1 complexes with a series of neutral guests, secondary ammonium salts, and tertiary ammonium salts in both solution and solid states. The association constants between H and the neutral guests were between (1.23 ± 0.10) × 102 and (4.70 ± 0.47) × 103 M-1, while the association constants between H and the ammonium guests were between (1.35 ± 0.12) × 103 and (1.59 ± 0.14) × 105 M-1. Moreover, H showed bigger association constants with secondary ammonium salts than those with tertiary ammonium salts possibly because of the steric hindrance effect and multiple intermolecular interactions. The stimuli-responsive complexation between H and the ammonium salts could be controlled by the addition and removal of acids and bases as well. Based on the host-guest complexation between H and the secondary ammonium salt, [2]rotaxane was further synthesized, and its shuttling motion could be efficiently controlled by an acid and base.
Collapse
Affiliation(s)
- Jing Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Ni Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Iwata T, Hyodo M, Fukami T, Shiota Y, Yoshizawa K, Shindo M. Anthranoxides as Highly Reactive Arynophiles for the Synthesis of Triptycenes. Chemistry 2020; 26:8506-8510. [PMID: 32432370 DOI: 10.1002/chem.202002065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/19/2020] [Indexed: 12/14/2022]
Abstract
We report herein an efficient method to synthesize triptycenes by the reaction of benzynes and anthranoxides, which are electron-rich and readily prepared from the corresponding anthrones. Using this method, 1,9-syn-substituted triptycenes were regioselectively obtained employing 3-methoxybenzynes. This method was also applied to synthesize pentiptycenes. A DFT study revealed that the cycloaddition of lithium anthranoxide and benzyne proceeds stepwise.
Collapse
Affiliation(s)
- Takayuki Iwata
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Mizuki Hyodo
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Takuto Fukami
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Mitsuru Shindo
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| |
Collapse
|
9
|
Gataullina AR, Gataullin RR. Axial Chiral Metal Complexes, Carbo- and Heterocycles: Modern
Synthesis Strategies and Examples of the Effect of Atropoisomerism on the Structure of
Reaction Products. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220070130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Preda G, Nitti A, Pasini D. Chiral Triptycenes in Supramolecular and Materials Chemistry. ChemistryOpen 2020; 9:719-727. [PMID: 32547902 PMCID: PMC7290281 DOI: 10.1002/open.202000077] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Triptycenes are an intriguing class of organic molecules with several unusual characteristics, such as a propeller-like shape, saddle-like cavities around a symmetrical scaffold, a rigid π-framework. They have been extensively studied and proposed as key synthons for a variety of applications in supramolecular chemistry and materials science. When decorated with an appropriate substitution pattern, triptycenes can be chiral, and, similarly to other popular chiral π-extended synthons, can express chirality robustly, efficiently, and with relevance to chiroptical spectroscopies. This minireview highlights and encompasses recent advances in the synthesis of chiral triptycenes and in their introduction as molecular scaffolds for the assembly of functional supramolecular materials.
Collapse
Affiliation(s)
- Giovanni Preda
- Department of Chemistry and INSTM Research UnitUniversity of Pavia – ItalyVia Taramelli 1227100PaviaItaly
| | - Andrea Nitti
- Department of Chemistry and INSTM Research UnitUniversity of Pavia – ItalyVia Taramelli 1227100PaviaItaly
| | - Dario Pasini
- Department of Chemistry and INSTM Research UnitUniversity of Pavia – ItalyVia Taramelli 1227100PaviaItaly
| |
Collapse
|
11
|
Abstract
A new type of macrocyclic arenes, named pagoda[4]arene (P4) and i-pagoda[4]arene (i-P4), were conveniently synthesized by the TFA-catalyzed one-pot condensation of 2,6-dimethoxylanthracene and paraformaldehyde in dichloromethane at room temperature. P4 and i-P4 showed unique square pagoda structures and fixed conformations in solution and also exhibited strong blue fluorescence. Moreover, P4 and i-P4 with deep and rich-electron cavities could not only encapsulate n-hexane and one or two dichloromethane molecules in the solid state but also showed strong binding abilities toward neutral dinitriles with different chain lengths and various nitrogen-containing heterocyclic salts to form 1:1 stable host-guest complexes in both solution and the solid state. In particular, it was also found that with the increase in the alkyl chain length of the dinitriles, the association constants for their complexes with both P4 and i-P4 were markedly increased from glutaronitrile to octanedinitrile as a result of the deep cavities of the macrocycles and multiple intermolecular interactions. Since P4 and i-P4 had stable planar chirality, their efficient resolutions were further achieved by HPLC with a chiral column. Interestingly, the two enantiomers showed mirror-imaged CD signals and excellent CPL properties, which could allow them to have potential applications in chiral luminescent materials.
Collapse
Affiliation(s)
- Xiao-Ni Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Yoshinaga T, Fujiwara T, Iwata T, Shindo M. Synthesis of Distorted 1,8,13‐Trisilyl‐9‐hydroxytriptycenes by Triple Cycloaddition of Ynolates to 3‐Silylbenzynes. Chemistry 2019; 25:13855-13859. [DOI: 10.1002/chem.201903024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/22/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Tatsuro Yoshinaga
- Interdisciplinary Graduate School of Engineering SciencesKyushu University 6-1 Kasuga-koen Kasuga 816-8580 Japan
| | - Takumi Fujiwara
- Interdisciplinary Graduate School of Engineering SciencesKyushu University 6-1 Kasuga-koen Kasuga 816-8580 Japan
| | - Takayuki Iwata
- Institute for Materials Chemistry and EngineeringKyushu University 6-1 Kasuga-koen Kasuga 816-8580 Japan
| | - Mitsuru Shindo
- Institute for Materials Chemistry and EngineeringKyushu University 6-1 Kasuga-koen Kasuga 816-8580 Japan
| |
Collapse
|
13
|
Guo Y, Han Y, Chen CF. Construction of Chiral Nanoassemblies Based on Host-Guest Complexes and Their Responsive CD and CPL Properties: Chirality Transfer From 2,6-helic[6]arenes to a Stilbazolium Derivative. Front Chem 2019; 7:543. [PMID: 31428601 PMCID: PMC6688524 DOI: 10.3389/fchem.2019.00543] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/16/2019] [Indexed: 11/13/2022] Open
Abstract
A couple of water-soluble chiral 2,6-helic[6]arene derivatives P -H1 and M -H1 were synthesized, and they could form 1:1 stable complexes with 4-[(4'-N, N-diphenylamino)-styryl]-N-methylpyridinium iodide (G) in water. Compared with G, the host-guest complexes exhibited enhanced fluorescence, which might be attributed to the spatial confinement of G and restriction of aggregation-caused quenching (ACQ) effects. Based on the host-guest complexation, the first helic[6]arene-based chiral assemblies were then constructed, and they showed rectangular or hexagonal nanostructures by scanning electron microscopy (SEM) images. Interestingly, the assemblies showed clear mirror-image circular dichroism (CD) and circularly polarized luminescence (CPL) spectra in aqueous solution, revealing a consecutive chirality transfer from the chiral macrocyclic cavities of the hosts to G. Moreover, the supramolecular chirality of the assemblies could also show responsiveness to the pH values and temperatures of the system.
Collapse
Affiliation(s)
- Yan Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Li J, Shi Q, Han Y, Chen CF. Complexation of 2,6-helic[6]arene and its derivatives with 1,1'-dimethyl-4,4'-bipyridinium salts and protonated 4,4'-bipyridinium salts: an acid-base controllable complexation. Beilstein J Org Chem 2019; 15:1795-1804. [PMID: 31435451 PMCID: PMC6664404 DOI: 10.3762/bjoc.15.173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/18/2019] [Indexed: 01/26/2023] Open
Abstract
2,6-Helic[6]arene and its derivatives were synthesized, and their complexation with 1,1'-dimethyl-4,4'-bipyridinium and protonated 4,4'-bipyridinium salts were investigated in detail. It was found that the helic[6]arene and its derivatives could all form 1:1 complexes with both 1,1'-dimethyl-4,4'-bipyridinium salts and protonated 4,4'-bipyridinium salts in solution and in the solid state. Especially, the helic[6]arene and its derivatives containing 2-hydroxyethoxy or 2-methoxyethoxy groups exhibited stronger complexation with the guests than the other helic[6]arene derivatives for the additional multiple hydrogen bonding interactions between the hosts and the guests, which were evidenced by 1H NMR titrations, X-ray crystal structures and DFT calculations. Moreover, it was also found that the association constants (K a) of the complexes could be significantly enhanced with larger counteranions of the guests and in less polar solvents. Furthermore, the switchable complexation between the helic[6]arene and protonated 4,4'-bipyridinium salt could be efficiently controlled by acids and bases.
Collapse
Affiliation(s)
- Jing Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Zhou HY, Han Y, Shi Q, Chen CF. Directional Transportation of a Helic[6]arene along a Nonsymmetric Molecular Axle. J Org Chem 2019; 84:5872-5876. [PMID: 30900452 DOI: 10.1021/acs.joc.9b00229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Zhou HY, Han Y, Shi Q, Chen CF. A Triply Operable Molecular Switch: Anion-, Acid/Base- and Solvent-Responsive [2]Rotaxane. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Molecular Recognition and Function; Institute of Chemistry; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Molecular Recognition and Function; Institute of Chemistry; Chinese Academy of Sciences; 100190 Beijing China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Molecular Recognition and Function; Institute of Chemistry; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Molecular Recognition and Function; Institute of Chemistry; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
| |
Collapse
|