1
|
Dong C, Mai S, Wang S, Li X, Song Q. Base-promoted anaerobic intramolecular cyclization synthesis of 4,5-disubstituted-1,2,3-thiadiazoles. Org Chem Front 2022. [DOI: 10.1039/d2qo00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An alkali-promoted, transition-metal-free and oxidant-free method to construct 4,5-disubstituted-1,2,3-thiadiazoles from N-tosylhydrazone-bearing thiocarbamates by employing a sustainable intramolecular reaction strategy has been developed.
Collapse
Affiliation(s)
- Cong Dong
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
| | - Shaoyu Mai
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
| | - Shuai Wang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
| | - Xin Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
- State Key Laboratory of Organometallic Chemistry and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
2
|
Chu XQ, Ge D, Cui YY, Shen ZL, Li CJ. Desulfonylation via Radical Process: Recent Developments in Organic Synthesis. Chem Rev 2021; 121:12548-12680. [PMID: 34387465 DOI: 10.1021/acs.chemrev.1c00084] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As the "chemical chameleon", sulfonyl-containing compounds and their variants have been merged with various types of reactions for the efficient construction of diverse molecular architectures by taking advantage of their incredible reactive flexibility. Currently, their involvement in radical transformations, in which the sulfonyl group typically acts as a leaving group via selective C-S, N-S, O-S, S-S, and Se-S bond cleavage/functionalization, has facilitated new bond formation strategies which are complementary to classical two-electron cross-couplings via organometallic or ionic intermediates. Considering the great influence and synthetic potential of these novel avenues, we summarize recent advances in this rapidly expanding area by discussing the reaction designs, substrate scopes, mechanistic studies, and their limitations, outlining the state-of-the-art processes involved in radical-mediated desulfonylation and related transformations. With a specific emphasis on their synthetic applications, we believe this review will be useful for medicinal and synthetic organic chemists who are interested in radical chemistry and radical-mediated desulfonylation in particular.
Collapse
Affiliation(s)
- Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Ying Cui
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
3
|
Ai JJ, Liu BB, Li J, Wang F, Huang CM, Rao W, Wang SY. Fe-S Catalyst Generated In Situ from Fe(III)- and S 3•--Promoted Aerobic Oxidation of Terminal Alkenes. Org Lett 2021; 23:4705-4709. [PMID: 34060853 DOI: 10.1021/acs.orglett.1c01408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An iron-sulfur complex formed by the simple mixture of FeCl3 with S3•- generated in situ from K2S is developed and applied to selective aerobic oxidation of terminal alkenes. The reaction was carried out under an atmosphere of O2 (balloon) and could proceed on a gram scale, expanding the application of S3•- in organic synthesis. This study also encourages us to explore the application of an Fe-S catalyst in organic reactions.
Collapse
Affiliation(s)
- Jing-Jing Ai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Bei-Bei Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jian Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Fei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Cheng-Mi Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Pali P, Shukla G, Saha P, Singh MS. Photo-oxidative Ruthenium(II)-Catalyzed Formal [3 + 2] Heterocyclization of Thioamides to Thiadiazoles. Org Lett 2021; 23:3809-3813. [PMID: 33956460 DOI: 10.1021/acs.orglett.1c00766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An operationally simple and sustainable one-pot photo-oxidative formal [3 + 2] heterocyclization of β-ketothioamides with aryldiazonium salts catalyzed by Ru(bpy)3Cl2 has been realized to provide 2,4-disubstituted 5-imino-1,2,3-thiadiazoles in good to high yields under mild reaction conditions for the first time. The reaction proceeded via an α-phenylhydrazone adduct of thioamides leading to 1,2,3-thiadiazoles via N-S bond formation at room temperature. Notably, the products possess Z-stereochemistry with regard to the exocyclic C═N double bond at the 5-position of the ring.
Collapse
Affiliation(s)
- Pragya Pali
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Gaurav Shukla
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Priya Saha
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
5
|
Zhao YW, Wang SY, Liu XY, Jiang T, Rao W. Insertion Reaction of 2-Halo-N-allylanilines with K2S Involving Trisulfur Radical Anion: Synthesis of Benzothiazole Derivatives under Transition-Metal-Free Conditions. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1706104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractA synthesis of benzothiazole derivatives through the reaction of 2-halo-N-allylanilines with K2S in DMF is developed. The trisulfur radical anion S3·–, which is generated in situ from K2S in DMF, initiates the reaction without transition-metal catalysis or other additives. In addition, two C–S bonds are formed and heteroaromatization of benzothiazole is triggered by radical cyclization and H-shift.
Collapse
Affiliation(s)
- Yan-Wei Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University
| | - Xin-Yu Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University
| | - Tian Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University
| | | |
Collapse
|
6
|
Li W, Li X, Feng Y, Liu P, Ma X, Zhao J. Synthesis of novel 4-substituted 1,2,3-thiadiazoles via iodine-catalyzed cyclization reactions. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Li J, Li J, Ji X, Liu Q, Chen L, Huang Y, Li Y. Transition Metal‐Free Synthesis of Substituted Isothiazoles
via
Three‐Component Annulation of Alkynones, Xanthate and NH
4
I. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jian Li
- School of Biotechnology and Health Sciences Wuyi University Jiangmen, Guangdong Province 529090 People's Republic of China
| | - Jiaming Li
- School of Biotechnology and Health Sciences Wuyi University Jiangmen, Guangdong Province 529090 People's Republic of China
| | - Xiaoliang Ji
- School of Biotechnology and Health Sciences Wuyi University Jiangmen, Guangdong Province 529090 People's Republic of China
| | - Qiang Liu
- School of Biotechnology and Health Sciences Wuyi University Jiangmen, Guangdong Province 529090 People's Republic of China
- Center of Basic Molecular Science Department of Chemistry Tsinghua University Beijing 100084 People's Republic of China
| | - Lu Chen
- School of Biotechnology and Health Sciences Wuyi University Jiangmen, Guangdong Province 529090 People's Republic of China
| | - Yubing Huang
- School of Biotechnology and Health Sciences Wuyi University Jiangmen, Guangdong Province 529090 People's Republic of China
| | - Yibiao Li
- School of Biotechnology and Health Sciences Wuyi University Jiangmen, Guangdong Province 529090 People's Republic of China
| |
Collapse
|
8
|
Jin S, Li SJ, Ma X, Su J, Chen H, Lan Y, Song Q. Elemental-Sulfur-Enabled Divergent Synthesis of Disulfides, Diselenides, and Polythiophenes from β-CF 3 -1,3-Enynes. Angew Chem Int Ed Engl 2021; 60:881-888. [PMID: 32985082 DOI: 10.1002/anie.202009194] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/15/2020] [Indexed: 02/03/2023]
Abstract
Divergent synthesis for precise constructions of cyclic unsymmetrical diaryl disulfides or diselenides and polythiophenes from CF3 -containing 1,3-enynes and S8 was developed when the ortho group is F, Cl, Br, and NO2 on aromatic rings. Meanwhile, disulfides (diselenides) were also quickly constructed when the ortho group is H. These transformations undergo cascade thiophene construction/selective C3-position thiolation process, featuring simple operations, divergent synthesis, broad substrate scope, readily available starting materials, and valuable products. A novel plausible radical annulation process was proposed and validated by DFT calculations for the first time. A series of derivatizations about the thiophene (TBT) and disulfides were also well-represented.
Collapse
Affiliation(s)
- Shengnan Jin
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at, Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
| | - Shi-Jun Li
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Jianke Su
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at, Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
| | - Haohua Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, P. R. China
| | - Yu Lan
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China.,School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at, Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China.,Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
9
|
Chen T, Che C, Guo Z, Dong XQ, Wang CJ. Diastereoselective synthesis of functionalized tetrahydropyridazines containing indole scaffolds via an inverse-electron-demand aza-Diels–Alder reaction. Org Chem Front 2021. [DOI: 10.1039/d1qo00623a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A base-promoted and catalyst-free unprecedented inverse-electron-demand aza-Diels–Alder reaction between the in situ generated azoalkenes and 3-vinylindoles has been developed to afford tetrahydropyridazines containing indole scaffolds.
Collapse
Affiliation(s)
- Taotao Chen
- Engineering Research Centre of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
| | - Chao Che
- Engineering Research Centre of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
| | - Zhefei Guo
- Engineering Research Centre of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
| | - Xiu-Qin Dong
- Engineering Research Centre of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
| | - Chun-Jiang Wang
- Engineering Research Centre of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
| |
Collapse
|
10
|
Selective transformations of 2-(p-toluenesulfonyl)-N-tosylhydrazones to substituted 1,2,3-thiadiazoles. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Mai YZ, Xie YZ, Zheng MH, Zhou X, Jin JY. Facile synthesis of pyronin-9-thione via a trisulfur radical anion mechanism. NEW J CHEM 2021. [DOI: 10.1039/d0nj04808a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new synthetic methodology to obtain pyronin-9-thione is established. This is the first case of a trisulfur radical anion being involved in CS formation disclosed by both experimental and theoretical investigations.
Collapse
Affiliation(s)
- Yu-Zhuo Mai
- Research Centre of Chemical Biology
- Yanbian University
- Yanji 133002
- China
| | - Yu-Zhong Xie
- Research Centre of Chemical Biology
- Yanbian University
- Yanji 133002
- China
- Department of Chemistry
| | - Ming-Hua Zheng
- Research Centre of Chemical Biology
- Yanbian University
- Yanji 133002
- China
- Department of Chemistry
| | - Xin Zhou
- Research Centre of Chemical Biology
- Yanbian University
- Yanji 133002
- China
- Department of Chemistry
| | - Jing-Yi Jin
- Research Centre of Chemical Biology
- Yanbian University
- Yanji 133002
- China
| |
Collapse
|
12
|
Zhang ZZ, Chen R, Zhang XH, Zhang XG. Synthesis of Isoselenazoles and Isothiazoles from Demethoxylative Cycloaddition of Alkynyl Oxime Ethers. J Org Chem 2021; 86:632-642. [PMID: 33252231 DOI: 10.1021/acs.joc.0c02286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A general method for the synthesis of isoselenazoles and isothiazoles has been developed by the base-promoted demethoxylative cycloaddition of alkynyl oxime ethers using the cheap and inactive Se powder and Na2S as selenium and sulfur sources. This transformation features the direct construction of N-, Se-, and S-containing heterocycles through the formation of N-Se/S and C-Se/S bonds in one-pot reactions with excellent functional group tolerance.
Collapse
Affiliation(s)
- Zhu-Zhu Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Rong Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiao-Hong Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xing-Guo Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.,Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou 542899, China
| |
Collapse
|
13
|
Nguyen KX, Pham PH, Nguyen TT, Yang CH, Pham HTB, Nguyen TT, Wang H, Phan NTS. Trisulfur-Radical-Anion-Triggered C(sp 2)-H Amination of Electron-Deficient Alkenes. Org Lett 2020; 22:9751-9756. [PMID: 33261315 DOI: 10.1021/acs.orglett.0c03846] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A trisulfur-radical-anion (S3̇-)-triggered C(sp2)-H amination of α,β-unsaturated carbonyl derivatives with simple amines has been demonstrated. This protocol provides convenient access to a variety of synthetically valuable N-unprotected and secondary β-enaminones with absolute Z selectivity and tertiary β-enaminones with E selectivity. Mechanistic probe and electronic structure theory calculations suggest that S3̇- initiates the nucleophilic attacks via a thiirane intermediate.
Collapse
Affiliation(s)
- Khang X Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Phuc H Pham
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Thao T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.,Tra Vinh University, 126 Nguyen Thien Thanh, Ward 5, Tra Vinh City, Tra Vinh Province, Vietnam
| | - Chou-Hsun Yang
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80204, United States
| | - Hoai T B Pham
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.,Department of Chemistry, University of Colorado Denver, Denver, Colorado 80204, United States
| | - Tung T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Haobin Wang
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80204, United States
| | - Nam T S Phan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| |
Collapse
|
14
|
Jin S, Li S, Ma X, Su J, Chen H, Lan Y, Song Q. Elemental‐Sulfur‐Enabled Divergent Synthesis of Disulfides, Diselenides, and Polythiophenes from β‐CF
3
‐1,3‐Enynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shengnan Jin
- Institute of Next Generation Matter Transformation College of Material Sciences Engineering at Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Shi‐Jun Li
- College of Chemistry, and Institute of Green Catalysis Zhengzhou University 100 Science Avenue Zhengzhou Henan 450001 P. R. China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University College of Chemistry at Fuzhou University Fuzhou Fujian 350108 P. R. China
| | - Jianke Su
- Institute of Next Generation Matter Transformation College of Material Sciences Engineering at Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Haohua Chen
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 400030 P. R. China
| | - Yu Lan
- College of Chemistry, and Institute of Green Catalysis Zhengzhou University 100 Science Avenue Zhengzhou Henan 450001 P. R. China
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 400030 P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation College of Material Sciences Engineering at Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University College of Chemistry at Fuzhou University Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
15
|
Nagaraju C, Ashok SH, Shamanth S, Nagarakere SC, Sunilkumar MP, Subbegowda RK, Mantelingu K. A novel and facile synthesis of 3,5-Disubstituted isothiozoles under metal free conditions using acetophenones and dithioesters. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1748656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Chaithra Nagaraju
- Synthetic Laboratory, DOS in Chemistry, University of Mysore, Manasagangotri, India
| | - Swarup Hassan Ashok
- Synthetic Laboratory, DOS in Chemistry, University of Mysore, Manasagangotri, India
| | | | | | | | | | | |
Collapse
|
16
|
Li W, Zhang J, He J, Xu L, Vaccaro L, Liu P, Gu Y. I 2/DMSO-Catalyzed Transformation of N-tosylhydrazones to 1,2,3-thiadiazoles. Front Chem 2020; 8:466. [PMID: 32596205 PMCID: PMC7304252 DOI: 10.3389/fchem.2020.00466] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/04/2020] [Indexed: 12/05/2022] Open
Abstract
An iodine/DMSO catalyzed selective cyclization of N-tosylhydrazones with sulfur without adding external oxidant was developed for the synthesis of 4-aryl-1,2,3-thiadiazoles. In this reaction, oxidation of HI by using DMSO as dual oxidant and solvent is the key, which allowed the regeneration of I2, ensuring thus the success of the synthesis. This protocol features by simple operation, high step-economy (one-pot fashion), broad substrate scope as well as scale-up ability.
Collapse
Affiliation(s)
- Weiwei Li
- The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Jun Zhang
- The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Jing He
- The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Liang Xu
- The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Luigi Vaccaro
- Laboratory of Green S.O.C., Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia, Italy
| | - Ping Liu
- The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yanlong Gu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Zhang J, Li W, Liu Y, Liu P. HI/DMSO‐Catalyzed Cyclization of Aryl(sulfo)acylhydrazones with Sulfur. ChemistrySelect 2020. [DOI: 10.1002/slct.202001310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jun Zhang
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi City 832004 P. R. China
| | - Weiwei Li
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi City 832004 P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi City 832004 P. R. China
| | - Ping Liu
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi City 832004 P. R. China
| |
Collapse
|
18
|
Jin S, Kuang Z, Song Q. Precise Construction of SCF2H or SeCF2H Groups on Heteroarenes Generated in Situ from CF3-Containing 1,3-Enynes. Org Lett 2020; 22:615-619. [DOI: 10.1021/acs.orglett.9b04389] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shengnan Jin
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, China 361021
| | - Zhijie Kuang
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, China 361021
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, China 361021
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, China 350108
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
19
|
Jafarpour F, Rajai-Daryasarei S, Gohari MH. Cascade cyclization versus chemoselective reduction: a solvent-controlled product divergence. Org Chem Front 2020. [DOI: 10.1039/d0qo00876a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A convenient controllable cascade cyclization and partial reduction of enones for the divergent construction of two types of valuable compounds including polysubstituted thiophenes and saturated ketones are developed.
Collapse
Affiliation(s)
- Farnaz Jafarpour
- School of Chemistry
- College of Science
- University of Tehran
- 14155-6455 Tehran
- Iran
| | | | | |
Collapse
|
20
|
Huang G, Li J, Ji X, Chen L, Liu Q, Chen X, Huang Y, Li Y. Access to 4-substituted isothiazoles through three-component cascade annulation and their application in C–H activation. Chem Commun (Camb) 2020; 56:5763-5766. [DOI: 10.1039/d0cc01100b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of EtOCS2k enabled the annulation of isopropene derivatives with NH4I, affording various 4-substituted isothiazoles in good yields.
Collapse
Affiliation(s)
- Guoling Huang
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- China
| | - Jian Li
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- China
| | - Xiaoliang Ji
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- China
| | - Lu Chen
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- China
| | - Qiang Liu
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- China
- Center of Basic Molecular Science
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- China
| | - Yubing Huang
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- China
| | - Yibiao Li
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- China
| |
Collapse
|
21
|
Li W, He J, Liu P, Zhang J, Dai B. Synthesis of 4‐Aryl‐1,2,3‐Thiadiazoles via NH
4
I‐Catalyzed Cyclization of
N
‐Tosylhydrazones with Sulfur. ChemistrySelect 2019. [DOI: 10.1002/slct.201902684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Weiwei Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang BingtuanShihezi University Shihezi 832003 P. R. China
| | - Jing He
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang BingtuanShihezi University Shihezi 832003 P. R. China
| | - Ping Liu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang BingtuanShihezi University Shihezi 832003 P. R. China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang BingtuanShihezi University Shihezi 832003 P. R. China
| | - Bin Dai
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang BingtuanShihezi University Shihezi 832003 P. R. China
| |
Collapse
|
22
|
Wang C, Geng X, Zhao P, Zhou Y, Wu YD, Cui YF, Wu AX. I 2/CuCl 2-promoted one-pot three-component synthesis of aliphatic or aromatic substituted 1,2,3-thiadiazoles. Chem Commun (Camb) 2019; 55:8134-8137. [PMID: 31240291 DOI: 10.1039/c9cc04254g] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient I2/CuCl2-promoted one-pot three-component strategy for the construction of 1,2,3-thiadiazoles from aliphatic- or aromatic-substituted methyl ketones, p-toluenesulfonyl hydrazide, and potassium thiocyanate has been developed. Simple and commercially available starting materials, a broad substrate scope, and excellent functional group tolerability make this strategy practical for applications. Furthermore, 1,2,3-thiadiazole synthesis was realized by using potassium thiocyanate as an odorless sulfur source.
Collapse
Affiliation(s)
- Can Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Xiao Geng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Peng Zhao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Yan-Fang Cui
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
23
|
Zhang Y, Cao Y, Lu L, Zhang S, Bao W, Huang S, Rao Y. Perylenequinonoid-Catalyzed [4 + 1] and [4 + 2] Annulations of Azoalkenes: Photocatalytic Access to 1,2,3-Thiadiazole/1,4,5,6-Tetrahydropyridazine Derivatives. J Org Chem 2019; 84:7711-7721. [PMID: 31117482 DOI: 10.1021/acs.joc.9b00545] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nitrogen-containing heterocycles are especially considered "privileged" structural scaffolds for the development of new drugs. However, traditional methods of organic synthesis are mainly based on thermal cycloaddition reaction; thus, the exploration of new strategies for the rapid assembly of N-heterocycles under mild conditions is highly desirable. Here, we developed a new method that visible light along with 1 mol % cercosporin, which is one of the perylenequinonoid pigments with excellent properties of photosensitization and can be easily produced by a new isolated endophytic fungus Cercospora sp. JNU001 strain with high yield through microbial fermentation, catalyzes the synthesis of 1,2,3-thiadiazoles and 1,4,5,6-tetrahydropyridazines by a photocatalytic process with good regioselectivity and broad functional-group compatibility under mild conditions. Thus, a bridge between microbial fermentation and organic photocatalysis for the construction of nitrogen-containing heterocycles was set up in a sustainable, environmentally friendly manner.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuping Huang
- College of Chemistry , Fuzhou University, Fuzhou , Fujian 350108 , P. R. China
| | | |
Collapse
|
24
|
De Oliveira Silva A, McQuade J, Szostak M. Recent Advances in the Synthesis and Reactivity of Isothiazoles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900072] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - James McQuade
- Department of Chemistry Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Michal Szostak
- College of Chemistry and Chemical Engineering and Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry Ministry of Education Shaanxi University of Science and Technology Xi'an 710021 People's Republic of China
- Department of Chemistry Rutgers University 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
25
|
Mo S, Teng Q, Pan Y, Tang H. Metal‐ and Oxidant‐free Electrosynthesis of 1,2,3‐Thiadiazoles from Element Sulfur and N‐tosyl Hydrazones. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801700] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shi‐Kun Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences ofGuangxi Normal University Guilin 541004 People's Republic of China
| | - Qing‐Hu Teng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences ofGuangxi Normal University Guilin 541004 People's Republic of China
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology 6 LiangxiangEast Street Beijing 100081 People's Republic of China
| | - Ying‐Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences ofGuangxi Normal University Guilin 541004 People's Republic of China
| | - Hai‐Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences ofGuangxi Normal University Guilin 541004 People's Republic of China
| |
Collapse
|
26
|
Wang T, An Z, Qi Z, Zhuang D, Chang A, Yang Y, Yan R. Ring-opening/annulation reaction of cyclopropyl ethanols: concise access to thiophene aldehydes via C–S bond formation. Org Chem Front 2019. [DOI: 10.1039/c9qo01014a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The synthesis of thiophene aldehydes from easily available cyclopropyl ethanol derivatives and potassium sulfide has been developed.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Zhenyu An
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Zhenjie Qi
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Daijiao Zhuang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Aosheng Chang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Yunxia Yang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| |
Collapse
|
27
|
Li JH, Huang Q, Rao W, Wang SY, Ji SJ. A trisulfur radical anion (S3˙−) involved sulfur insertion reaction of 1,3-enynes: sulfide sources control chemoselective synthesis of 2,3,5-trisubstituted thiophenes and 3-thienyl disulfides. Chem Commun (Camb) 2019; 55:7808-7811. [DOI: 10.1039/c9cc03604k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cascade cyclization reactions of S3˙−in situ generated from S2− with 1,3-enynes for the chemoselective synthesis of 2,3,5-trisubstituted thiophenes and 3-thienyl disulfides controlled by sulfide salts are developed.
Collapse
Affiliation(s)
- Jing-Hao Li
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Qi Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Weidong Rao
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals
- College of Chemical Engineering, Nanjing Forestry University
- Nanjing 210037
- China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| |
Collapse
|
28
|
Chen L, Min H, Zeng W, Zhu X, Liang Y, Deng G, Yang Y. Transition-Metal-Free Sulfuration/Annulation of Alkenes: Economical Access to Thiophenes Enabled by the Cleavage of Multiple C-H Bonds. Org Lett 2018; 20:7392-7395. [PMID: 30460854 DOI: 10.1021/acs.orglett.8b03078] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel, atom economical, and transition-metal-free strategy for the synthesis of thiophenes from substituted buta-1-enes with potassium sulfide has been presented. The reaction achieves double C-S bond formations via cleavage of multiple C-H bonds and provides an efficient approach to access various functionalized thiophenes. Moreover, the strategy can also be used for the synthesis of thiophenes from 1,4-diaryl-1,3-dienes. Mechanistically, DMSO plays a role of oxidant and S3•- in situ generated from K2S is involved.
Collapse
Affiliation(s)
- Liang Chen
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha , Hunan 410081 , China
| | - Hao Min
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha , Hunan 410081 , China
| | - Weilan Zeng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha , Hunan 410081 , China
| | - Xiaoming Zhu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha , Hunan 410081 , China
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha , Hunan 410081 , China
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha , Hunan 410081 , China
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha , Hunan 410081 , China
| |
Collapse
|