1
|
Choudhuri K, Zhang Z, Loh TP. β-Silyl alkynoates: Versatile reagents for biocompatible and selective amide bond formation. SCIENCE ADVANCES 2024; 10:eadp7544. [PMID: 39292777 PMCID: PMC11421574 DOI: 10.1126/sciadv.adp7544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/13/2024] [Indexed: 09/20/2024]
Abstract
The study introduces a previously unidentified method for amide bond formation that addresses several limitations of conventional approaches. It uses the β-silyl alkynoate molecule, where the alkynyl group activates the ester for efficient amide formation, while the bulky TIPS (triisopropylsilane) group prevents unwanted 1,4-addition reactions. This approach exhibits high chemoselectivity for amines, making the method compatible with a wide range of substrates, including secondary amines, and targets the specific ε-amino group of lysine among the native amino ester's derivatives. It maintains stereochemistry during amide bond formation and TIPS group removal, allowing a versatile platform for postsynthesis modifications such as click reactions and peptide-drug conjugations. These advancements hold substantial promise for pharmaceutical development and peptide engineering, opening avenues for research applications.
Collapse
Affiliation(s)
- Khokan Choudhuri
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Zhenguo Zhang
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
2
|
Komaki T, Sato Y, Uchiyama M, Tanaka K, Nagashima Y. Visible-Light-Induced trans-Hydroboration of Diaryl Alkynes Utilizing Excited State of Borate Complexes. Org Lett 2024; 26:2180-2185. [PMID: 38466232 DOI: 10.1021/acs.orglett.4c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
We have developed visible-light-induced trans-hydroboration of diaryl alkynes via direct photoexcitation of in-situ-generated diboron complexes, affording previously elusive (E)-1,2-diaryl-vinylboronates with high stereoselectivity. Experimental, spectroscopic, and theoretical mechanistic studies revealed that the triplet-state borate complex facilitates B-B bond cleavage and the desired C-B bond formation. This methodology does not require any catalyst and is operationally simple. The highly borylated 1,2-diaryl alkenes [1-(2-borylphenyl)vinyl)boronates] are shown to be useful as building blocks.
Collapse
Affiliation(s)
- Takahiro Komaki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yu Sato
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
3
|
Campbell R, Buchbinder NW, Szwetkowski C, Zhu Y, Piedl K, Truong M, Matson JB, Santos WL, Mevers E. Design, Synthesis, and Antifungal Activity of 3-Substituted-2( 5H)-Oxaboroles. ACS Med Chem Lett 2024; 15:349-354. [PMID: 38505851 PMCID: PMC10945556 DOI: 10.1021/acsmedchemlett.3c00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Next generation antimicrobial therapeutics are desperately needed as new pathogens with multiple resistance mechanisms continually emerge. Two oxaboroles, tavaborole and crisaborole, were recently approved as topical treatments for onychomycosis and atopic dermatitis, respectively, warranting further studies into this privileged structural class. Herein, we report the antimicrobial properties of 3-substituted-2(5H)-oxaboroles, an unstudied family of medicinally relevant oxaboroles. Our results revealed minimum inhibitory concentrations as low as 6.25 and 5.20 μg/mL against fungal (e.g., Penicillium chrysogenum) and yeast (Saccharomyces cerevisiae) pathogens, respectively. These oxaboroles were nonhemolytic and nontoxic to rat myoblast cells (H9c2). Structure-activity relationship studies suggest that planarity is important for antimicrobial activity, possibly due to the effects of extended conjugation between the oxaborole and benzene rings.
Collapse
Affiliation(s)
- Rose Campbell
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | | | - Connor Szwetkowski
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yumeng Zhu
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Karla Piedl
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Mindy Truong
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John B. Matson
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L. Santos
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Emily Mevers
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
4
|
Chen Z, Nie B, Li X, Liu T, Li C, Huang J. Ligand-controlled regiodivergent Ni-catalyzed trans-hydroboration/carboboration of internal alkynes with B 2pin 2. Chem Sci 2024; 15:2236-2242. [PMID: 38332812 PMCID: PMC10848681 DOI: 10.1039/d3sc04184k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
Unprecedented regioselective trans-hydroboration and carboboration of unbiased electronically internal alkynes were realized via a nickel catalysis system with the aid of the directing group strategy. Furthermore, the excellent α- and β-regioselectivity could be accurately switched by the nitrogen ligand (terpy) and phosphine ligand (Xantphos). Mechanistic studies provided an insight into the rational reaction process, that underwent the cis-to-trans isomerization of alkenyl nickel species. This transformation not only expands the scope of transition-metal-catalyzed boration of internal alkynes but also, more particularly, portrays the vast prospects of the directing group strategy in the selective functionalization of unactivated alkynes.
Collapse
Affiliation(s)
- Zunsheng Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Gannan Medical University), Ministry of Education, School of Pharmacy, Gannan Medical University Ganzhou 341000 P. R. China
| | - Biao Nie
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Company, Ltd Dongguan 523871 P. R. China
| | - Xiaoning Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Gannan Medical University), Ministry of Education, School of Pharmacy, Gannan Medical University Ganzhou 341000 P. R. China
| | - Teng Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Gannan Medical University), Ministry of Education, School of Pharmacy, Gannan Medical University Ganzhou 341000 P. R. China
| | - Chunsheng Li
- School of Chemistry and Chemical Engineering, Zhaoqing University Zhaoqing 526060 P. R. China
| | - Jiuzhong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Gannan Medical University), Ministry of Education, School of Pharmacy, Gannan Medical University Ganzhou 341000 P. R. China
| |
Collapse
|
5
|
Li G, Li Z, Gao L, Chen S, Wang G, Li S. Combined molecular dynamics and coordinate driving method for automatically searching complicated reaction pathways. Phys Chem Chem Phys 2023; 25:23696-23707. [PMID: 37610711 DOI: 10.1039/d3cp02443a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The combined molecular dynamics and coordinate driving (MD/CD) method is updated and generalized in this work to broaden its applications in automatically searching reaction pathways for complicated reactions. In this updated version, MD simulations are performed with the GFN's family of methods to systematically sample conformers for almost any systems with atomic numbers Z ≤ 86. The improved CD procedure is greatly accelerated by applying a pre-screening stage at the semiempirical GFN2-xTB level. An automatic module based on the Marcus theory and its improved version (the Wolynes theory) is designed to include single electron transfer (SET) processes into reaction pathways. The capabilities of this method are demonstrated by exploring the most possible reaction pathways of three experimentally reported reactions: the organophosphine-catalyzed trans phosphinoboration, the Fe(II) complex-mediated C(sp2)-H borylation reaction, and the SET-triggered deaminative radical cross-coupling reaction. Comprehensive reaction networks are obtained for all three reactions with reasonable computational costs. Detailed mechanisms for these reactions can account for the reported experimental facts.
Collapse
Affiliation(s)
- Guoao Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Zhenxing Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Liuzhou Gao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Shengda Chen
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
6
|
Tian X, Zhang YK, You YX, Han JR, Cheng QS, Fan SM, Chen DD, Wang TT, Liu S, Su W. LiO tBu-Promoted trans-Stereoselective and β-Regioselective Hydroboration of Propargyl Alcohols. Org Lett 2023; 25:6401-6406. [PMID: 37603790 DOI: 10.1021/acs.orglett.3c02411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
A convenient and efficient trans-stereoselective and β-regioselective hydroboration of propargyl alcohols was achieved simply with LiOtBu as the base and (Bpin)2 as the boron reagent in dimethyl sulfoxide at room temperature. Both terminal and internal propargyl alcohols with diverse structures and functional groups underwent the transformation smoothly to produce β-Bpin-substituted (E)-allylic alcohols, of which the synthetic potentials were demonstrated by the downstream conversions of boronate, alkenyl, and hydroxyl groups.
Collapse
Affiliation(s)
- Xia Tian
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
| | - Yu-Kun Zhang
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
| | - Ya-Xin You
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
| | - Jian-Rong Han
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
| | - Qiu-Shi Cheng
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
| | - Shi-Ming Fan
- Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
| | - Di-Di Chen
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
| | - Ting-Ting Wang
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
| | - Shouxin Liu
- Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
| | - Wei Su
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
- Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
| |
Collapse
|
7
|
Biswas K, Khamrai A, Malik S, Ganesh V. Organophosphorus-Catalyzed Borylative Ring-Opening of Vinylcyclopropanes: A Stereoselective Route to δ-Valerolactones. Org Lett 2023; 25:1805-1810. [PMID: 36919935 DOI: 10.1021/acs.orglett.2c04284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
We report an operationally simple route to δ-valerolactones through an organophosphorus-catalyzed borylative ring-opening/allylation of vinylcyclopropanes providing δ-hydroxy esters stereoselectively. The δ-hydroxy esters were lactonized to obtain densely substituted δ-valerolactones. The present methodology exhibited enhanced functional group tolerance compared to the existing metal-mediated methods. A plausible mechanism for borylative ring-opening reaction has been suggested. 31P NMR studies indicated the involvement of a phosphonium zwitterionic species. The synthetic utility of the intermediate allyl boronates was demonstrated.
Collapse
Affiliation(s)
- Krishna Biswas
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| | - Aankhi Khamrai
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| | - Subrata Malik
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| | - Venkataraman Ganesh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| |
Collapse
|
8
|
Fürstner A. How to Break the Law:
trans
‐Hydroboration and
gem
‐Hydroboration of Alkynes. Isr J Chem 2023. [DOI: 10.1002/ijch.202300004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Alois Fürstner
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| |
Collapse
|
9
|
Zhang Y, Wang Z, Lamine W, Xu S, Li B, Chrostowska A, Miqueu K, Liu SY. Mechanism of Pd/Senphos-Catalyzed trans-Hydroboration of 1,3-Enynes: Experimental and Computational Evidence in Support of the Unusual Outer-Sphere Oxidative Addition Pathway. J Org Chem 2023; 88:2415-2424. [PMID: 36752741 PMCID: PMC10162691 DOI: 10.1021/acs.joc.2c02841] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The reaction mechanism of the Pd/Senphos-catalyzed trans-hydroboration reaction of 1,3-enynes was investigated using various experimental techniques, including deuterium and double crossover labeling experiments, X-ray crystallographic characterization of model reaction intermediates, and reaction progress kinetic analysis. Our experimental data are in support of an unusual outer-sphere oxidative addition mechanism where the catecholborane serves as a suitable electrophile to activate the Pd0-bound 1,3-enyne substrate to form a Pd-η3-π-allyl species, which has been determined to be the likely resting state of the catalytic cycle. Double crossover labeling of the catecholborane points toward a second role played by the borane as a hydride delivery shuttle. Density functional theory calculations reveal that the rate-limiting transition state of the reaction is the hydride abstraction by the catecholborane shuttle, which is consistent with the experimentally determined rate law: rate = k[enyne]0[borane]1[catalyst]1. The computed activation free energy ΔG‡ = 17.7 kcal/mol and KIE (kH/kD = 1.3) are also in line with experimental observations. Overall, this work experimentally establishes Lewis acids such as catecholborane as viable electrophilic activators to engage in an outer-sphere oxidative addition reaction and points toward this underutilized mechanism as a general approach to activate unsaturated substrates.
Collapse
Affiliation(s)
- Yuanzhe Zhang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Ziyong Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Walid Lamine
- E2S UPPA/CNRS, Université de Pau et des Pays de l'Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 avenue P. Angot, 64053 Pau Cedex 09, France
| | - Senmiao Xu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Bo Li
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Anna Chrostowska
- E2S UPPA/CNRS, Université de Pau et des Pays de l'Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 avenue P. Angot, 64053 Pau Cedex 09, France
| | - Karinne Miqueu
- E2S UPPA/CNRS, Université de Pau et des Pays de l'Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 avenue P. Angot, 64053 Pau Cedex 09, France
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
- E2S UPPA/CNRS, Université de Pau et des Pays de l'Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 avenue P. Angot, 64053 Pau Cedex 09, France
| |
Collapse
|
10
|
Jos S, Tan C, Thilmany P, Saadane A, Slebodnick C, Evano G, Santos WL. Phosphine-catalyzed regio- and stereo-selective hydroboration of ynamides to ( Z)-β-borylenamides. Chem Commun (Camb) 2022; 58:13751-13754. [PMID: 36416159 DOI: 10.1039/d2cc04543e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report a tri-n-butyl phosphine catalyzed regio- and stereo-selective hydroboration of ynamides to yield (Z)-β-borylenamides in good yields. Surprisingly, a formal cis addition to the triple bond was observed as confirmed by NMR and X-ray crystallography. 31P NMR studies suggest that a zwitterionic vinylphosphonium intermediate is key in the mechanism. The resulting products were further transformed to β-CF3 enamides via stereoretentive trifluoromethylation.
Collapse
Affiliation(s)
- Swetha Jos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, USA.
| | - Christine Tan
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, USA.
| | - Pierre Thilmany
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles, Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| | - Alaâ Saadane
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles, Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| | - Carla Slebodnick
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, USA.
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles, Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, USA.
| |
Collapse
|
11
|
Jos S, Szwetkowski C, Slebodnick C, Ricker R, Chan KL, Chan WC, Radius U, Lin Z, Marder TB, Santos WL. Transition Metal-Free Regio- and Stereo-Selective trans Hydroboration of 1,3-Diynes: A Phosphine-Catalyzed Access to (E)-1-Boryl-1,3-Enynes. Chemistry 2022; 28:e202202349. [PMID: 35917135 PMCID: PMC9804376 DOI: 10.1002/chem.202202349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 01/05/2023]
Abstract
We report a transition metal-free, regio- and stereo-selective, phosphine-catalyzed method for the trans hydroboration of 1,3-diynes with pinacolborane that affords (E)-1-boryl-1,3-enynes. The reaction proceeds with excellent selectivity for boron addition to the external carbon of the 1,3-diyne framework as unambiguously established by NMR and X-ray crystallographic studies. The reaction displays a broad substrate scope including unsymmetrical diynes to generate products in high yield (up to 95 %). Experimental and theoretical studies suggest that phosphine attack on the alkyne is a key process in the catalytic cycle.
Collapse
Affiliation(s)
- Swetha Jos
- Department of ChemistryVirginia TechBlacksburgVirginiaUnited States
| | | | - Carla Slebodnick
- Department of ChemistryVirginia TechBlacksburgVirginiaUnited States
| | - Robert Ricker
- Institute of Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgGermany
| | - Ka Lok Chan
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong SARChina
| | - Wing Chun Chan
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong SARChina
| | - Udo Radius
- Institute of Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgGermany
| | - Zhenyang Lin
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong SARChina
| | - Todd B. Marder
- Institute of Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgGermany
| | | |
Collapse
|
12
|
Gange GB, Humphries AL, Smith MD, Peryshkov DV. Activation of Alkynes by a Redox-Active Carboranyl Diphosphine and Formation of Boron-Containing Phosphacycles. Inorg Chem 2022; 61:18568-18573. [DOI: 10.1021/acs.inorgchem.2c02919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gayathri B. Gange
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Amanda L. Humphries
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Mark D. Smith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Dmitry V. Peryshkov
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
13
|
Feng Q, Li S, Li Z, Yan Q, Lin X, Song L, Zhang X, Wu YD, Sun J. Ru-Catalyzed Hydroboration of Ynones Leads to a Nontraditional Mode of Reactivity. J Am Chem Soc 2022; 144:14846-14855. [PMID: 35900878 DOI: 10.1021/jacs.2c06024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although hydroboration of simple ketones and alkynes have been well-established, little is known about the unique hydroboration reactivity for ynones, a family of important building blocks. Herein we report a new reaction mode of ynones leading to structurally novel and synthetically useful but previously inaccessible products, vinyl α-hydroxylboronates, under mild ruthenium-catalyzed hydroboration conditions. This reaction features high efficiency, a broad scope, and complete chemo-, regio-, and stereoselectivity, in spite of many possible competitive pathways. Both control experiments and detailed DFT studies suggested a two-step mechanism, involving initial rate-determining conjugate addition of hydroborane to form the key boryl allenolate intermediate followed by a fast second hydroboration of the enolate motif of the allenolate. Notably, direct 1,4-addition of hydroborane to carbonyl-conjugated alkynes also represents a new mode of reactivity. Despite the overwhelming complexity of this process, which involves selectivity control in almost every step, a thorough and detailed computation on a large set of possible transition states explained the unusual reactivity and intrinsic origin of selectivity.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Shijia Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China.,Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zhiyang Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Qiaolin Yan
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Xiangfeng Lin
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Shenzhen 518055, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China.,Shenzhen Research Institute, HKUST, No. 9 Yuexing 1st Road, Shenzhen 518057, China
| |
Collapse
|
14
|
Altarejos J, Valero A, Manzano R, Carreras J. Synthesis of Tri‐ and Tetrasubstituted Alkenyl Boronates from Alkynes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Julia Altarejos
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Antonio Valero
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Rubén Manzano
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Javier Carreras
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica Carretera Madrid-Barcelona km 33,6, Campus Universitario.Facultad de Farmacia 28805 Alcalá de Henares SPAIN
| |
Collapse
|
15
|
Koeritz MT, Banovetz HK, Prell SA, Stanley LM. Synthesis of oxaboranes via nickel-catalyzed dearylative cyclocondensation. Chem Sci 2022; 13:7790-7795. [PMID: 35865885 PMCID: PMC9258507 DOI: 10.1039/d2sc01840c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022] Open
Abstract
We report Ni-catalyzed dearylative cyclocondensation of aldehydes, alkynes, and triphenylborane. The reaction is initiated by oxidative cyclization of the aldehyde and alkyne coupling partners to generate an oxanickelacyclopentene which reacts with triphenylborane to form oxaboranes. This formal dearylative cyclocondensation reaction generates oxaboranes in moderate-to-high yields (47–99%) with high regioselectivities under mild reaction conditions. This approach represents a direct and modular synthesis of oxaboranes which are difficult to access using current methods. These oxaboranes are readily transformed into valuable building blocks for organic synthesis and an additional class of boron heterocycles. Selective homocoupling forms oxaboroles, oxidation generates aldol products, and reduction and arylation form substituted allylic alcohols. Oxaboranes are prepared via a nickel-catalyzed dearylative cyclocondensation reaction in up to 99% yield and excellent regioselectivity. These oxaborane products can be further transformed into a variety of synthetically useful building blocks.![]()
Collapse
Affiliation(s)
- Mason T Koeritz
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Haley K Banovetz
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Sean A Prell
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Levi M Stanley
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| |
Collapse
|
16
|
Corpas J, Gomez-Mendoza M, Ramírez-Cárdenas J, de la Peña O'Shea VA, Mauleón P, Gómez Arrayás R, Carretero JC. One-Metal/Two-Ligand for Dual Activation Tandem Catalysis: Photoinduced Cu-Catalyzed Anti-hydroboration of Alkynes. J Am Chem Soc 2022; 144:13006-13017. [PMID: 35786909 PMCID: PMC9348838 DOI: 10.1021/jacs.2c05805] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
A dual catalyst system
based on ligand exchange of two diphosphine
ligands possessing different properties in a copper complex has been
devised to merge metal- and photocatalytic activation modes. This
strategy has been applied to the formal anti-hydroboration of activated
internal alkynes via a tandem sequence in which Cu/Xantphos catalyzes
the B2pin2-syn-hydroboration
of the alkyne whereas Cu/BINAP serves as a photocatalyst for visible
light-mediated isomerization of the resulting alkenyl boronic ester.
Photochemical studies by means of UV–vis absorption, steady-state
and time-resolved fluorescence, and transient absorption spectroscopy
have allowed characterizing the photoactive Cu/BINAP species in the
isomerization reaction and its interaction with the intermediate syn-alkenyl boronic ester through energy transfer from the
triplet excited state of the copper catalyst. In addition, mechanistic
studies shed light into catalyst speciation and the interplay between
the two catalytic cycles as critical success factors.
Collapse
Affiliation(s)
- Javier Corpas
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Miguel Gomez-Mendoza
- Photoactivated Processes Unit, IMDEA Energy Institute, Technological Park of Mostoles, Avda. Ramón de la Sagra 3, 28935 Madrid, Spain
| | - Jonathan Ramírez-Cárdenas
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Víctor A de la Peña O'Shea
- Photoactivated Processes Unit, IMDEA Energy Institute, Technological Park of Mostoles, Avda. Ramón de la Sagra 3, 28935 Madrid, Spain
| | - Pablo Mauleón
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, 28049 Madrid, Spain
| | - Ramón Gómez Arrayás
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, 28049 Madrid, Spain
| | - Juan C Carretero
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, 28049 Madrid, Spain
| |
Collapse
|
17
|
Hümpfner E, Buzsáki D, Kelemen Z. DFT mechanistic investigation of the 1,2‐reduction of α,β‐unsaturated ynones. ChemistrySelect 2022. [DOI: 10.1002/slct.202201768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Evelyn Hümpfner
- Department of Inorganic and Analytical Chemistry Budapest University of Technology and Economics Műegyetem rakpart 3 H-1111 Budapest Hungary
| | - Dániel Buzsáki
- Department of Inorganic and Analytical Chemistry Budapest University of Technology and Economics Műegyetem rakpart 3 H-1111 Budapest Hungary
- MTA-BME Computation Driven Chemistry Research Group Műegyetem rakpart 3 H-1111 Budapest Hungary
| | - Zsolt Kelemen
- Department of Inorganic and Analytical Chemistry Budapest University of Technology and Economics Műegyetem rakpart 3 H-1111 Budapest Hungary
| |
Collapse
|
18
|
Bowen J, Slebodnick C, Santos WL. Phosphine-catalyzed hydroboration of propiolonitriles: access to ( E)-1,2-vinylcyanotrifluoroborate derivatives. Chem Commun (Camb) 2022; 58:5984-5987. [PMID: 35481802 DOI: 10.1039/d2cc00603k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an organocatalytic trans hydroboration of 3-substituted-propiolonitriles. In the presence of catalytic amounts of tributylphosphine and pinacolborane, regioselective hydroboration of the internal triple bond proceeded in a stereoselective fashion under mild conditions to afford the corresponding (E)-1,2-vinylcyanoborane derivatives. The mechanism is proposed to occur through a 1,2-phosphine addition instead of a canonical 1,4-conjugate addition pathway.
Collapse
Affiliation(s)
- Johnathan Bowen
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Carla Slebodnick
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
19
|
Szwetkowski C, Slebodnick C, Santos WL. Regio- and stereoselective copper-catalyzed α,β-protoboration of allenoates: access to Z-β,γ-unsaturated β-boryl esters. Org Biomol Chem 2022; 20:3287-3291. [PMID: 35383802 DOI: 10.1039/d2ob00423b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A highly efficient regio- and stereoselective method for allenoate borylation has been developed. Using CuCl and bis(pinacolato)diboron in methanol, a variety of allenoates underwent β-boration and α-protonation to afford the corresponding Z-β,γ-unsaturated β-boryl esters under mild conditions with up to 81% yields.
Collapse
Affiliation(s)
- Connor Szwetkowski
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, 24060, USA.
| | - Carla Slebodnick
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, 24060, USA.
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, 24060, USA.
| |
Collapse
|
20
|
Das KK, Mahato S, Hazra S, Panda S. Development of Methods to the Synthesis of β-Boryl Acyls, Imines and Nitriles. CHEM REC 2022; 22:e202100290. [PMID: 35088513 DOI: 10.1002/tcr.202100290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022]
Abstract
Organoboron compounds are highly important and versatile synthetic intermediates for the preparation of a wide range of organic molecules. Organoboron compounds have drawn significant attention among organic chemists due to their Lewis acidic property, non-toxicity, and commercial availability. Over the last several decades, there has been a substantial development of new organoboron compounds, useful in organic synthesis. Among all other organoboron compounds, β-boryl carbonyl compounds are the important ones. The β-boryl compounds have appeared as promising intermediates for various synthetic transformations. The 1,4-conjugate addition of diboron reagents to carbon-carbon double bond in the presence of different transition-metal catalysts has been extensively reported by various research groups across the globe. This mini-review outlines the numerous racemic as well as asymmetric β-borylation methods developed to date.
Collapse
Affiliation(s)
- Kanak Kanti Das
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Somenath Mahato
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Subrata Hazra
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Santanu Panda
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
21
|
Grams RJ, Lawal MM, Szwetkowski C, Foster D, Rosenblum CA, Slebodnick C, Welborn VV, Santos WL. Organocatalytic
Trans
Semireduction of Primary and Secondary Propiolamides: Substrate Scope and Mechanistic Studies. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- R. Justin Grams
- Department of Chemistry Virginia Tech 900 West Campus Drive Blacksburg Virginia 24061 United States
| | - Monsurat M. Lawal
- Department of Chemistry Virginia Tech 900 West Campus Drive Blacksburg Virginia 24061 United States
| | - Connor Szwetkowski
- Department of Chemistry Virginia Tech 900 West Campus Drive Blacksburg Virginia 24061 United States
| | - Daniel Foster
- Department of Chemistry Virginia Tech 900 West Campus Drive Blacksburg Virginia 24061 United States
| | - Carol Ann Rosenblum
- Department of Chemistry Virginia Tech 900 West Campus Drive Blacksburg Virginia 24061 United States
| | - Carla Slebodnick
- Department of Chemistry Virginia Tech 900 West Campus Drive Blacksburg Virginia 24061 United States
| | - Valerie Vaissier Welborn
- Department of Chemistry Virginia Tech 900 West Campus Drive Blacksburg Virginia 24061 United States
| | - Webster L. Santos
- Department of Chemistry Virginia Tech 900 West Campus Drive Blacksburg Virginia 24061 United States
| |
Collapse
|
22
|
Wang J, Zhou H, Wei J, Liu F, Wang T. Metal-free trans-hydroboration without a B-H bond: reactions of propargyl amines with Lewis acidic boranes. Chem Commun (Camb) 2022; 58:6910-6913. [DOI: 10.1039/d2cc02687b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first alkyne trans-hydroboration reaction without a B-H bond was described. This was achieved by reactions of propargyl amines with Lewis acidic boranes under mild conditions. The mechanism involved borane-mediated...
Collapse
|
23
|
trans-Selective hydrocyanation of ynoates, ynones and ynoic acids catalyzed by nucleophilic phosphines. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Rej S, Das A, Panda TK. Overview of Regioselective and Stereoselective Catalytic Hydroboration of Alkynes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100950] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Supriya Rej
- Institut für Chemie Technische Universität Berlin Berlin, Strasse des 17. Juni 115 10623 Berlin Germany
| | - Amrita Das
- Department of Applied Chemistry Faculty of Engineering Osaka University 565-0871 Suita Osaka Japan
| | - Tarun K. Panda
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi 502285 Sangareddy Telangana India
| |
Collapse
|
25
|
Biswas K, Das A, Ganesh V. Recent Advances in Organophosphorus‐Catalyzed Borylation and Silylation Reactions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Krishna Biswas
- Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Aniruddha Das
- Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Venkataraman Ganesh
- Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| |
Collapse
|
26
|
Nakano M, Nakamura R, Sumida Y, Nagao K, Furuyama T, Inagaki F, Ohmiya H. Fluorescent-Oxaboroles: Synthesis and Optical Property by Sugar Recognition. Chem Pharm Bull (Tokyo) 2021; 69:526-528. [PMID: 34078798 DOI: 10.1248/cpb.c21-00179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The optical property of fluorescent unit-conjugated aliphatic oxaboroles has been investigated. The oxaboroles provide good fluorescence quantum yields and selective recognition toward D-ribose and D-ribose containing molecules. The molecular recognition induced significant fluorescence quenching. The property of the boroles showed the possibility of the boron-based nicotinamide adenine dinucleotide (NAD) sensor probe.
Collapse
Affiliation(s)
- Misaki Nakano
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | - Rikako Nakamura
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | - Yuto Sumida
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | - Kazunori Nagao
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | | | | | - Hirohisa Ohmiya
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| |
Collapse
|
27
|
Guo X, Lin Z. Mechanistic Insights into Activation of Carbon Monoxide, Carbon Dioxide, and Nitrous Oxide by Acyclic Silylene. Inorg Chem 2021; 60:8998-9007. [PMID: 34042432 DOI: 10.1021/acs.inorgchem.1c00903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Owing to an empty p orbital and a lone pair of electrons on the Si center, silylene exhibits reactivity similar to a transition-metal system capable of activating H2/C-H bonds and small molecules. In this work, with the aid of density functional theory calculations, we systematically investigated the reactions of an acyclic silylene with CO, CO2, and N2O. The detailed mechanisms obtained lead to an in-depth understanding of the silylene single-site ambiphilic reactivity.
Collapse
Affiliation(s)
- Xueying Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| |
Collapse
|
28
|
Xu Y, Yu C, Zhang X, Fan X. Selective Synthesis of Dihydrophenanthridine and Phenanthridine Derivatives from the Cascade Reactions of o-Arylanilines with Alkynoates through C-H/N-H/C-C Bond Cleavage. J Org Chem 2021; 86:5805-5819. [PMID: 33793223 DOI: 10.1021/acs.joc.1c00256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper, an unprecedented selective synthesis of dihydrophenanthridine and phenanthridine derivatives through the cascade reactions of 2-arylanilines with alkynoates is presented. Mechanistic studies showed that the formation of the dihydrophenanthridine scaffold involves an initial C(sp2)-H alkenylation of 2-arylaniline with alkynoate followed by an intramolecular aza-Michael addition. When this reaction is carried out at elevated temperature, the in situ formed substituted dihydrophenanthridine readily undergoes a retro-Mannich-type reaction to give the corresponding phenanthridine through C-C bond cleavage. Compared with literature methods, this novel protocol has advantages such as easily obtainable substrates with a free amino group, pharmaceutically privileged products, cheap catalysts, and conveniently controllable selectivity.
Collapse
Affiliation(s)
- Yuanshuang Xu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Caiyun Yu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
29
|
Hirano K, Uchiyama M. Inter‐Element Boration Reactions of Carbon‐Carbon Multiple Bonds
via
Lewis‐Basic Activation of Boron Reagents. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Keiichi Hirano
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Cluster of Pioneering Research (CPR) Advanced Elements Chemistry Laboratory, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- Research Initiative for Supra-Materials (RISM) Shinshu University 3-15-1 Tokida Ueda Nagano 386-8567 Japan
| |
Collapse
|
30
|
Jos S, Santos WL. Copper‐Catalyzed Synthesis of α‐Trifluoromethylacrylates from Trifluoroborylacrylates
via
Stereoretentive Radical Trifluoromethylation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202000937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Swetha Jos
- Department of Chemistry Virginia Tech Blacksburg Virginia 24061 USA
| | | |
Collapse
|
31
|
Seifert F, Drikermann D, Steinmetzer J, Zi Y, Kupfer S, Vilotijevic I. Z-Selective phosphine promoted 1,4-reduction of ynoates and propynoic amides in the presence of water. Org Biomol Chem 2021; 19:6092-6097. [PMID: 34152338 DOI: 10.1039/d1ob00909e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphine-mediated reductions of substituted propynoic esters and amides in the presence of water yield the partially reduced α,β-unsaturated esters and amides with high Z-selectivity. The competitive in situ Z to E-isomerization of the product in some cases lowers the Z to E ratios of the isolated α,β-unsaturated carbonyl products. Reaction time and the amounts of phosphine and water in the reaction mixture are the key experimental factors which control the selectivity by preventing or reducing the rates of Z- to E-product isomerization. Close reaction monitoring enables isolation of the Z-alkenes with high selectivities. The computational results suggest that the reactions could be highly Z-selective owing to the stereoselective formation of the E-P-hydroxyphosphorane intermediate.
Collapse
Affiliation(s)
- Fabian Seifert
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
| | - Denis Drikermann
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
| | - Johannes Steinmetzer
- Institute for Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - You Zi
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
| | - Stephan Kupfer
- Institute for Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Ivan Vilotijevic
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
| |
Collapse
|
32
|
Hirano K, Morimoto K, Fujioka S, Miyamoto K, Muranaka A, Uchiyama M. Nucleophilic Diboration Strategy Targeting Diversified 1‐Boraphenarene Architectures. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Keiichi Hirano
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Kensuke Morimoto
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Shota Fujioka
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Atsuya Muranaka
- Cluster of Pioneering Research (CPR) Advanced Elements Chemistry Laboratory RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Cluster of Pioneering Research (CPR) Advanced Elements Chemistry Laboratory RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- Research Initiative for Supra-Materials (RISM) Shinshu University 3-15-1 Tokida Ueda Nagano 386-8567 Japan
| |
Collapse
|
33
|
Hirano K, Morimoto K, Fujioka S, Miyamoto K, Muranaka A, Uchiyama M. Nucleophilic Diboration Strategy Targeting Diversified 1‐Boraphenarene Architectures. Angew Chem Int Ed Engl 2020; 59:21448-21453. [DOI: 10.1002/anie.202009242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Keiichi Hirano
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Kensuke Morimoto
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Shota Fujioka
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Atsuya Muranaka
- Cluster of Pioneering Research (CPR) Advanced Elements Chemistry Laboratory RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Cluster of Pioneering Research (CPR) Advanced Elements Chemistry Laboratory RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- Research Initiative for Supra-Materials (RISM) Shinshu University 3-15-1 Tokida Ueda Nagano 386-8567 Japan
| |
Collapse
|
34
|
Fritzemeier RG, Nekvinda J, Vogels CM, Rosenblum CA, Slebodnick C, Westcott SA, Santos WL. Organocatalytic
trans
Phosphinoboration of Internal Alkynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Jan Nekvinda
- Department of Chemistry Virginia Tech 900 West Campus Drive Blacksburg VA 24061 USA
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry Mount Allison University 63C York Street Sackville New Brunswick E4L 1G8 Canada
| | - Carol Ann Rosenblum
- Department of Chemistry Virginia Tech 900 West Campus Drive Blacksburg VA 24061 USA
| | - Carla Slebodnick
- Department of Chemistry Virginia Tech 900 West Campus Drive Blacksburg VA 24061 USA
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry Mount Allison University 63C York Street Sackville New Brunswick E4L 1G8 Canada
| | - Webster L. Santos
- Department of Chemistry Virginia Tech 900 West Campus Drive Blacksburg VA 24061 USA
| |
Collapse
|
35
|
Fritzemeier RG, Nekvinda J, Vogels CM, Rosenblum CA, Slebodnick C, Westcott SA, Santos WL. Organocatalytic
trans
Phosphinoboration of Internal Alkynes. Angew Chem Int Ed Engl 2020; 59:14358-14362. [PMID: 32406101 DOI: 10.1002/anie.202006096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Indexed: 01/10/2023]
Affiliation(s)
| | - Jan Nekvinda
- Department of Chemistry Virginia Tech 900 West Campus Drive Blacksburg VA 24061 USA
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry Mount Allison University 63C York Street Sackville New Brunswick E4L 1G8 Canada
| | - Carol Ann Rosenblum
- Department of Chemistry Virginia Tech 900 West Campus Drive Blacksburg VA 24061 USA
| | - Carla Slebodnick
- Department of Chemistry Virginia Tech 900 West Campus Drive Blacksburg VA 24061 USA
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry Mount Allison University 63C York Street Sackville New Brunswick E4L 1G8 Canada
| | - Webster L. Santos
- Department of Chemistry Virginia Tech 900 West Campus Drive Blacksburg VA 24061 USA
| |
Collapse
|
36
|
Docherty JH, Nicholson K, Dominey AP, Thomas SP. A Boron–Boron Double Transborylation Strategy for the Synthesis of gem-Diborylalkanes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00869] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jamie H. Docherty
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Kieran Nicholson
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Andrew P. Dominey
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Stephen P. Thomas
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
37
|
Liu X, Ming W, Friedrich A, Kerner F, Marder TB. Copper-Catalyzed Triboration of Terminal Alkynes Using B 2 pin 2 : Efficient Synthesis of 1,1,2-Triborylalkenes. Angew Chem Int Ed Engl 2020; 59:304-309. [PMID: 31502712 PMCID: PMC6972586 DOI: 10.1002/anie.201908466] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/31/2019] [Indexed: 02/04/2023]
Abstract
We report herein the catalytic triboration of terminal alkynes with B2 pin2 (bis(pinacolato)diboron) using readily available Cu(OAc)2 and Pn Bu3 . Various 1,1,2-triborylalkenes, a class of compounds that have been demonstrated to be potential matrix metalloproteinase (MMP-2) inhibitors, were obtained directly in moderate to good yields. The process features mild reaction conditions, a broad substrate scope, and good functional group tolerance. This copper-catalyzed reaction can be conducted on a gram scale to produce the corresponding 1,1,2-triborylalkenes in modest yields. The utility of these products was demonstrated by further transformations of the C-B bonds to prepare gem-dihaloborylalkenes (F, Cl, Br), monohaloborylalkenes (Cl, Br), and trans-diaryldiborylalkenes, which serve as important synthons and have previously been challenging to prepare.
Collapse
Affiliation(s)
- Xiaocui Liu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Wenbo Ming
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Florian Kerner
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
38
|
Saptal VB, Wang R, Park S. Recent advances in transition metal-free catalytic hydroelementation (E = B, Si, Ge, and Sn) of alkynes. RSC Adv 2020; 10:43539-43565. [PMID: 35519696 PMCID: PMC9058465 DOI: 10.1039/d0ra07768b] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/15/2020] [Indexed: 12/21/2022] Open
Abstract
This review describes the recent advances in the transition metal-free hydroelementation of alkynes with various metalloid hydrides.
Collapse
Affiliation(s)
- Vitthal B. Saptal
- Department of Chemistry
- Guangdong Technion Israel Institute of Technology
- China
| | - Ruibin Wang
- Department of Chemistry
- Guangdong Technion Israel Institute of Technology
- China
| | - Sehoon Park
- Department of Chemistry
- Guangdong Technion Israel Institute of Technology
- China
- Technion-Israel Institute of Technology
- 32000 Haifa
| |
Collapse
|
39
|
Liu X, Ming W, Friedrich A, Kerner F, Marder TB. Kupfer‐katalysierte Triborierung terminaler Alkine mit B
2
pin
2
: Effiziente Synthese von 1,1,2‐Triborylalkenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908466] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaocui Liu
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Wenbo Ming
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Alexandra Friedrich
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Florian Kerner
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Todd B. Marder
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
40
|
Nieto-Sepulveda E, Bage AD, Evans LA, Hunt TA, Leach AG, Thomas SP, Lloyd-Jones GC. Kinetics and Mechanism of the Arase-Hoshi R2BH-Catalyzed Alkyne Hydroboration: Alkenylboronate Generation via B–H/C–B Metathesis. J Am Chem Soc 2019; 141:18600-18611. [DOI: 10.1021/jacs.9b10114] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Eduardo Nieto-Sepulveda
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrew D. Bage
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Louise A. Evans
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Thomas A. Hunt
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Andrew G. Leach
- School of Health Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Stephen P. Thomas
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Guy C. Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| |
Collapse
|
41
|
Fritzemeier RG, Medici EJ, Szwetkowski C, Wonilowicz LG, Sibley CD, Slebodnick C, Santos WL. Route to Air and Moisture Stable β-Difluoroboryl Acrylamides. Org Lett 2019; 21:8053-8057. [PMID: 31538791 DOI: 10.1021/acs.orglett.9b03031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A method for the preparation of air stable difluoroboryl acrylamides is reported. In contrast to the ubiquitous organotrifluoroborate salts, difluoroboryl acrylamides are relatively nonpolar and are readily purified by silica chromatography. Difluoroboryl acrylamides serve as efficient substrates in cross-coupling reactions to afford the corresponding trisubstituted acrylamides in good to excellent yields. The utility of the difluoroboryl group in various chemical transformations is presented.
Collapse
Affiliation(s)
- Russell G Fritzemeier
- Department of Chemistry , Virginia Tech , 900 West Campus Drive , Blacksburg , Virginia 24061 , United States
| | - Eric J Medici
- Department of Chemistry , Virginia Tech , 900 West Campus Drive , Blacksburg , Virginia 24061 , United States
| | - Connor Szwetkowski
- Department of Chemistry , Virginia Tech , 900 West Campus Drive , Blacksburg , Virginia 24061 , United States
| | - Laura G Wonilowicz
- Department of Chemistry , Virginia Tech , 900 West Campus Drive , Blacksburg , Virginia 24061 , United States
| | - Christopher D Sibley
- Department of Chemistry , Virginia Tech , 900 West Campus Drive , Blacksburg , Virginia 24061 , United States
| | - Carla Slebodnick
- Department of Chemistry , Virginia Tech , 900 West Campus Drive , Blacksburg , Virginia 24061 , United States
| | - Webster L Santos
- Department of Chemistry , Virginia Tech , 900 West Campus Drive , Blacksburg , Virginia 24061 , United States
| |
Collapse
|
42
|
Yamamoto K, Mohara Y, Mutoh Y, Saito S. Ruthenium-Catalyzed (Z)-Selective Hydroboration of Terminal Alkynes with Naphthalene-1,8-diaminatoborane. J Am Chem Soc 2019; 141:17042-17047. [DOI: 10.1021/jacs.9b06910] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kensuke Yamamoto
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yusei Mohara
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuichiro Mutoh
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Shinichi Saito
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
43
|
Grams RJ, Fritzemeier RG, Slebodnick C, Santos WL. trans-Hydroboration of Propiolamides: Access to Primary and Secondary (E)-β-Borylacrylamides. Org Lett 2019; 21:6795-6799. [PMID: 31393740 DOI: 10.1021/acs.orglett.9b02408] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R. Justin Grams
- Department of Chemistry, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Russell G. Fritzemeier
- Department of Chemistry, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Carla Slebodnick
- Department of Chemistry, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L. Santos
- Department of Chemistry, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| |
Collapse
|
44
|
Longobardi LE, Fürstner A. trans
‐Hydroboration of Propargyl Alcohol Derivatives and Related Substrates. Chemistry 2019; 25:10063-10068. [DOI: 10.1002/chem.201902228] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/07/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Lauren E. Longobardi
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim/Ruhr Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim/Ruhr Germany
| |
Collapse
|
45
|
Meng FF, Xue QY, Jiang B, Zhao M, Xie JH, Xu YH, Loh TP. Divergent Protosilylation and Protoborylation of Polar Enynes. Org Lett 2019; 21:2932-2936. [PMID: 30939022 DOI: 10.1021/acs.orglett.9b00995] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Copper-catalyzed divergent conjugate protosilylation and protoborylation of polar enynes were developed. The corresponding β-boryldienoates and β-silyldienotes were obtained in moderate to good yields and with good stereoselectivity. In this protocol, novel cascade double protoborylation/protodeboronation processes of polar enynoates enabled access of the useful trisubstituted vinylboronates in up to 80% yield and with up to 98:2 Z/ E ratio. Moreover, divergent transformations of the products thus obtained were also investigated.
Collapse
Affiliation(s)
- Fei-Fan Meng
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Qi-Yan Xue
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Bing Jiang
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Meng Zhao
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Jia-Hao Xie
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Yun-He Xu
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Teck-Peng Loh
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University 637371 , Singapore
| |
Collapse
|
46
|
Nogami M, Hirano K, Morimoto K, Tanioka M, Miyamoto K, Muranaka A, Uchiyama M. Alkynylboration Reaction Leading to Boron-Containing π-Extended cis-Stilbenes as a Highly Tunable Fluorophore. Org Lett 2019; 21:3392-3395. [DOI: 10.1021/acs.orglett.9b01132] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marina Nogami
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiichi Hirano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kensuke Morimoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaru Tanioka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Atsuya Muranaka
- Cluster for Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Cluster for Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
47
|
Carreras J, Caballero A, Pérez PJ. Alkenyl Boronates: Synthesis and Applications. Chem Asian J 2019; 14:329-343. [DOI: 10.1002/asia.201801559] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/11/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Javier Carreras
- Departamento de Química Orgánica y Química InorgánicaUniversidad de Alcalá (IQAR) 28805-Alcalá de Henares Madrid Spain
| | - Ana Caballero
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de QuímicaUniversidad de Huelva 21007- Huelva Spain
| | - Pedro J. Pérez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de QuímicaUniversidad de Huelva 21007- Huelva Spain
| |
Collapse
|
48
|
Liu W, Zeng R, Han Y, Wang Y, Tao H, Chen Y, Liu F, Liang Y. Computational and experimental investigation on the BCl3 promoted intramolecular amination of alkenes and alkynes. Org Biomol Chem 2019; 17:2776-2783. [DOI: 10.1039/c9ob00264b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The BCl3 promoted aminoboration of alkenes and alkynes was investigated both computationally and experimentally, leading to the discovery of a metal-free hydroamination of alkynes.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Ruxin Zeng
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Yingbin Han
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Yajun Wang
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Huimin Tao
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Yu Chen
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Fang Liu
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| |
Collapse
|
49
|
Fürstner A. trans-Hydrogenation, gem-Hydrogenation, and trans-Hydrometalation of Alkynes: An Interim Report on an Unorthodox Reactivity Paradigm. J Am Chem Soc 2018; 141:11-24. [DOI: 10.1021/jacs.8b09782] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| |
Collapse
|