1
|
Ando Y, Ogawa D, Ohmori K, Suzuki K. Enantioselective Total Syntheses of Preussomerins: Control of Spiroacetal Stereogenicity by Photochemical Reaction of a Naphthoquinone through 1,6-Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2023; 62:e202213682. [PMID: 36446739 PMCID: PMC10107447 DOI: 10.1002/anie.202213682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
We report the enantioselective total syntheses of preussomerins EG1 , EG2 , and EG3 . The key transformation is a stereospecific photochemical reaction involving 1,6-hydrogen atom transfer to achieve retentive replacement of a C-H with a C-O bond, enabling otherwise-difficult control of the spiroacetal stereogenic center.
Collapse
Affiliation(s)
- Yoshio Ando
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Daichi Ogawa
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Ken Ohmori
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Keisuke Suzuki
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
2
|
Hou ZW, Zhang MM, Yang WC, Wang L. Catalyst- and Oxidizing Reagent-Free Electrochemical Benzylic C(sp 3)-H Oxidation of Phenol Derivatives. J Org Chem 2022; 87:7806-7817. [PMID: 35648817 DOI: 10.1021/acs.joc.2c00455] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A site-selective electrochemical approach for the benzylic C(sp3)-H oxidation reaction of phenol derivatives along with hydrogen evolution has been developed. The protocol proceeds in an easily available undivided cell at room temperature under catalyst- and oxidizing reagent-free conditions. The corresponding aryl aldehydes and ketones are obtained in satisfactory yields, and the gram-scale synthesis is easy to be carried out.
Collapse
Affiliation(s)
- Zhong-Wei Hou
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang, Taizhou 318000, P. R. China
| | - Ming-Ming Zhang
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, Yangzhou 225009, P. R. China
| | - Wen-Chao Yang
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, Yangzhou 225009, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang, Taizhou 318000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| |
Collapse
|
3
|
Holowinski P, Dawidowicz AL, Typek R. Chlorogenic acid-water complexes in chlorogenic acid containing food products. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Zhang S, Li X, Li W, Rao W, Ge D, Shen Z, Chu X. Iron(0)-Mediated Henry-Type Reaction of Bromonitromethane with Aldehydes for the Efficient Synthesis of 2-Nitro-alkan-1-ols. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Nakagawa Y, Yamaguchi K, Hosokawa S. Iodide-Mediated [3 + 2]-Cycloaddition Reaction with N-Tosylaziridines and α,β-Unsaturated Ketones. J Org Chem 2021; 86:7787-7796. [PMID: 34032429 DOI: 10.1021/acs.joc.1c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The [3 + 2]-cycloaddition reaction between N-tosylaziridines and α,β-unsaturated ketones was promoted with lithium iodide. The reaction proceeded under mild conditions to provide N-tosylpyrrolidines. Quaternary carbon-possessing 3,3-disubstituted pyrrolidines including spiro compounds were afforded in high yields. A simple procedure with easy to handle reagents makes this reaction concise. The intramolecular version of this reaction was applied to synthesize tropane skeletons.
Collapse
Affiliation(s)
- Yuya Nakagawa
- Department of Applied Chemistry, Faculty of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Keigo Yamaguchi
- Department of Applied Chemistry, Faculty of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Seijiro Hosokawa
- Department of Applied Chemistry, Faculty of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
6
|
Santra SK, Szpilman AM. Visible-Spectrum Solar-Light-Mediated Benzylic C-H Oxygenation Using 9,10-Dibromoanthracene As an Initiator. J Org Chem 2021; 86:1164-1171. [PMID: 33236899 DOI: 10.1021/acs.joc.0c01720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report a visible-light-mediated benzylic C-H oxygenation reaction. The reaction is initiated by solar light or the blue LED activation of 9,10-dibromoanthracene in a reaction with oxygen and takes place at ambient temperature and air pressure. Secondary benzylic positions are oxygenated to ketones, while tertiary benzylic carbons are oxygenated to give hydroperoxides. Notably, cumene hydroperoxide is produced in a higher yield and at milder conditions than the currently employed industrial conditions.
Collapse
Affiliation(s)
- Sourav K Santra
- Department of Chemical Sciences, Ariel University, 4070000 Ariel, Israel
| | - Alex M Szpilman
- Department of Chemical Sciences, Ariel University, 4070000 Ariel, Israel
| |
Collapse
|
7
|
Bismuth trichloride-catalyzed oxy-Michael addition of water and alcohol to α,β-unsaturated ketones. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Zhou Q, Wu SY, Jiang CX, Tong YP, Zhao T, Zhang B, Nong XH, Jin ZX, Hu JF. A new coumarin derivative from the stems of the endangered plant Ulmus elongata. Nat Prod Res 2020; 35:3562-3568. [PMID: 32037889 DOI: 10.1080/14786419.2020.1713124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A preliminary phytochemical investigation of the stems of the endangered plant Ulmus elongata led to the isolation of a new coumarin derivative (named ulmuselactone A, 1) and eight known compounds (2-9). The new structure was elucidated by detailed analysis of comprehensive spectroscopic methods, and its absolute configuration was established by comparing experimental and calculated electronic circular dichroism (ECD) spectra. The isolated compounds were evaluated for their antibacterial activities.
Collapse
Affiliation(s)
- Qi Zhou
- Institute of Natural Medicine and Health Products, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Advanced Study, Taizhou University, Taizhou, P.R. China
| | - Shou-Yuan Wu
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, P.R. China
| | - Chun-Xiao Jiang
- Institute of Natural Medicine and Health Products, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Advanced Study, Taizhou University, Taizhou, P.R. China
| | - Ying-Peng Tong
- Institute of Natural Medicine and Health Products, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Advanced Study, Taizhou University, Taizhou, P.R. China
| | - Ting Zhao
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University, Haikou, P.R. China
| | - Bin Zhang
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University, Haikou, P.R. China
| | - Xu-Hua Nong
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University, Haikou, P.R. China
| | - Ze-Xin Jin
- Institute of Natural Medicine and Health Products, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Advanced Study, Taizhou University, Taizhou, P.R. China
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Advanced Study, Taizhou University, Taizhou, P.R. China.,School of Pharmacy, Fudan University, Shanghai, P.R. China
| |
Collapse
|
9
|
Gong M, Guo J, Jiang P, Zhang Y, Fu Z, Huang W. Facile Synthesis of Polysubstituted Indolizines via One-Pot Reaction of 1-Acetylaryl 2-Formylpyrroles and Enals. Chem Asian J 2020; 15:352-355. [PMID: 31821730 DOI: 10.1002/asia.201901517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/22/2019] [Indexed: 01/28/2023]
Abstract
An efficient method for the synthesis of polysubstituted indolizines has been developed based on formal [4+2] annulation of 1-acetylaryl 2-formylpyrroles with enals, followed by oxidative aromatization. Pyridine-type six-membered rings were constructed in this transformation. This transition metal-free reaction features mild reaction conditions, a broad substrate scope, and excellent functional group tolerance. Notably, the formyl group is well tolerated under reaction conditions.
Collapse
Affiliation(s)
- Minghua Gong
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Jingcheng Guo
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Pengrui Jiang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Ye Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.,Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.,Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
10
|
Wu Z, Feng XX, Wang QD, Liu XY, Rao W, Yang JM, Shen ZL. An efficient Bi/NH4I-mediated addition reaction for the highly diastereoselective synthesis of homoallylic alcohols in aqueous media. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Copper(II)-catalyzed preparation of alkylindium compounds and applications in cross-coupling reactions both in aqueous media. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Liu XY, Li XR, Zhang C, Chu XQ, Rao W, Loh TP, Shen ZL. Iron(0)-Mediated Reformatsky Reaction for the Synthesis of β-Hydroxyl Carbonyl Compounds. Org Lett 2019; 21:5873-5878. [PMID: 31318222 DOI: 10.1021/acs.orglett.9b01999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An efficient, economical, and practical Reformatsky reaction of α-halo carbonyl compounds with aldehydes/ketones by using cheap and commercial iron(0) powder as reaction mediator is developed. The reactions proceeded effectively in the presence of a catalytic amount of iodine (20 mol %) to afford the synthetically useful β-hydroxyl carbonyl compounds in moderate to good yields.
Collapse
Affiliation(s)
- Xuan-Yu Liu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Xiang-Rui Li
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Chen Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Weidong Rao
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| |
Collapse
|
13
|
Cheng BQ, Zhao SW, Song XD, Chu XQ, Rao W, Loh TP, Shen ZL. Lead-Mediated Highly Diastereoselective Allylation of Aldehydes with Cyclic Allylic Halides. J Org Chem 2019; 84:5348-5356. [DOI: 10.1021/acs.joc.9b00370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Bu-Qing Cheng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Shi-Wen Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xuan-Di Song
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Weidong Rao
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|