1
|
Huang F, Man Y, Xu B. Synthesis of Trifluoromethylated Alkenes via a Tandem Aldol/ N-Acyloxyphthalimide-Assisted Decarboxylation Sequence. Org Lett 2025; 27:3889-3892. [PMID: 40202175 DOI: 10.1021/acs.orglett.5c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
We have developed a metal-free approach for synthesizing E-trifluoromethylated alkenes from readily available aldehydes and the N-hydroxyphtalimide ester of trifluoropropionic acid. To address the challenge of defluorination, we conducted high-throughput screening of reaction conditions. We discovered that acid-base co-catalysis effectively suppresses defluorination, thereby enhancing product yields. A key advantage of our method is its reliance on inexpensive, commercially available starting materials and straightforward reaction conditions.
Collapse
Affiliation(s)
- Fei Huang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yunquan Man
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
- Technology Development Center, Wanhua Chemical Group Co., Ltd, Yantai, Shandong 264006, China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
2
|
Wu K, Zhang X, Wu LL, Huang JS, Che CM. A Convergent, Modular Approach to Trifluoromethyl-Bearing 5-Membered Rings via Catalytic C(sp 3 )-H Activation. Angew Chem Int Ed Engl 2023; 62:e202215891. [PMID: 36596721 DOI: 10.1002/anie.202215891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Trifluoromethyl-bearing 5-membered rings are prevalent in bioactive molecules, but modular approaches to these compounds by functionalization of robust C(sp3 )-H bonds in a direct and selective manner are extremely challenging. Herein we report the rhodium-catalyzed α-CF3 -α-alkyl carbene insertion into C(sp3 )-H bonds of a broad range of substrates to access 7 types of CF3 -bearing saturated 5-membered carbo- and heterocycles. The reaction is particularly effective for benzylic C-H insertion exerting good site-, diastereo- and enantiocontrol, and applicable to the synthesis of chiral CF3 analogues of bioactive molecules. Ruthenium α-CF3 -α-alkyl carbene complexes underwent stoichiometric reactions to give C-H insertion products, lending evidence for the involvement of metal α-CF3 -α-alkyl carbene species in the catalytic cycle. DFT calculations revealed that the π⋅⋅⋅π attraction and intra-carbene C-H⋅⋅⋅F hydrogen bond elucidate the origin of selectivity of the benzylic C-H insertion reactions.
Collapse
Affiliation(s)
- Kai Wu
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xuyang Zhang
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,Chemistry and Chemical Engineering of Guangdong Provincial Laboratory, No. 1, College Road, Tuojiang Street, Jinping District, Shantou, Guangdong, 515041, China
| | - Liang-Liang Wu
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,Chemistry and Chemical Engineering of Guangdong Provincial Laboratory, No. 1, College Road, Tuojiang Street, Jinping District, Shantou, Guangdong, 515041, China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China
| |
Collapse
|
3
|
Dai MS, Zheng ZM, Zhang SL. High-valent Cu(III)-CF 3 compound-mediated esterification reaction. Org Biomol Chem 2023; 21:935-939. [PMID: 36602103 DOI: 10.1039/d2ob02166h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cu(III)-CF3 compounds are reported herein as novel coupling reagents to mediate ester synthesis from carboxyl acids and alcohols/phenols. Carboxylic acids are transformed to trifluoromethyl ester and acyl fluoride activated species that interact with each other. The broad substrate scope and late-stage application of this method are demonstrated. This study opens up new opportunities to develop interesting reactions using Cu(III)-CF3 compounds without transferring a CF3 group to the products.
Collapse
Affiliation(s)
- Ming-Suo Dai
- School of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Zhen-Mei Zheng
- School of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Song-Lin Zhang
- School of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
4
|
Zhang H, Feng C, Chen N, Zhang S. Direct Arene Trifluoromethylation Enabled by a High‐Valent Cu
III
−CF
3
Compound. Angew Chem Int Ed Engl 2022; 61:e202209029. [DOI: 10.1002/anie.202209029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Hao‐Ran Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University 1800 Lihu Road Wuxi 214122, Jiangsu China
| | - Cong‐Cong Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University 1800 Lihu Road Wuxi 214122, Jiangsu China
| | - Ning Chen
- School of Chemistry and Chemical Engineering Xinjiang Agricultural University 311 Nongda East Road Urumqi 830052, Xinjiang China
| | - Song‐Lin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University 1800 Lihu Road Wuxi 214122, Jiangsu China
- School of Chemistry and Chemical Engineering Xinjiang Agricultural University 311 Nongda East Road Urumqi 830052, Xinjiang China
| |
Collapse
|
5
|
Zhang HR, Feng CC, Chen N, Zhang SL. Direct Arene Trifluoromethylation Enabled by a High‐Valent Cu(III)‐CF3 Compound. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hao-Ran Zhang
- Jiangnan University School of Chemical and Material Engineering 214122 Wuxi CHINA
| | - Cong-Cong Feng
- Jiangnan University School of Chemical and Material Engineering 214122 Wuxi CHINA
| | - Ning Chen
- Xinjiang Agricultural University School of Chemistry and Chemical Engineering Urumqi CHINA
| | - Song-Lin Zhang
- Jiangnan University School of Chemical and Material Engineering 1800 Lihu Road 214122 Wuxi CHINA
| |
Collapse
|
6
|
Murtaza A, Qamar MA, Saleem K, Hardwick T, Zia Ul Haq, Shirinfar B, Ahmed N. Renewable Electricity Enables Green Routes to Fine Chemicals and Pharmaceuticals. CHEM REC 2022; 22:e202100296. [PMID: 35103382 DOI: 10.1002/tcr.202100296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/29/2022]
Abstract
Syntheses of chemicals using renewable electricity and when generating high atom economies are considered green and sustainable processes. In the present state of affairs, electrochemical manufacturing of fine chemicals and pharmaceuticals is not as common place as it could be and therefore, merits more attention. There is also a need to turn attention toward the electrochemical synthesis of valuable chemicals from recyclable greenhouse gases that can accelerate the process of circular economy. CO2 emissions are the major contributor to human-induced global warming. CO2 conversion into chemicals is a valuable application of its utilisation and will contribute to circular economy while maintaining environmental sustainability. Herein, we present an overview of electro-carboxylation, including mechanistic aspects, which forms carboxylic acids using molecular carbon dioxide. We also discuss atom economies of electrochemical fluorination, methoxylation and amide formation reactions.
Collapse
Affiliation(s)
- Ayesha Murtaza
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Awais Qamar
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Kaynat Saleem
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Tomas Hardwick
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.,National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Zia Ul Haq
- Chemical Engineering department, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | | | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
7
|
trans-Selective hydrocyanation of ynoates, ynones and ynoic acids catalyzed by nucleophilic phosphines. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Liu H, Shen Q. Well-defined organometallic Copper(III) complexes: Preparation, characterization and reactivity. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Novel multi-functionalized fluorine-containing organometallics: Preparation and applications of tetrafluoroethylenated zinc reagent. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Wu H, Shao C, Wu D, Jiang L, Yin H, Chen FX. Atom-Economical Thiocyanation-Amination of Alkynes with N-Thiocyanato-Dibenzenesulfonimide. J Org Chem 2021; 86:5327-5335. [PMID: 33703903 DOI: 10.1021/acs.joc.0c02780] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly regioselective protocol for intermolecular thiocyanation-amination of alkynes by N-thiocyano-dibenzenesulfonimide (NTSI) as the SCN and nitrogen sources has been developed. A C-S bond and C-N bond are simultaneously constructed in only one step. The reaction under simple mild conditions features a broad substrate scope, atom economy, high yields (up to 94%), and excellent functional group tolerance.
Collapse
Affiliation(s)
- Haopeng Wu
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Chukai Shao
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Di Wu
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Liang Jiang
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China.,State Key Laboratory of Medicinal Chemical Biology, NanKai University, No. 94 Wei Jin Road, Nankai District, Tianjin, 300071, China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| |
Collapse
|
11
|
Liu C, Yap GPA, Rowland CA, Tius MA. ( Z) -Trifluoromethyl-Trisubstituted Alkenes or Isoxazolines: Divergent Pathways from the Same Allene. Org Lett 2020; 22:7208-7212. [PMID: 32876462 DOI: 10.1021/acs.orglett.0c02546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because of a charge-dipole interaction involving nonbonding electron pairs on fluorine, protonation of trifluoromethyl allenes leads to tri- or tetrasubstituted alkenes with high (Z)-selectivity. Treatment of the same allenes with catalytic Au(I) initiates a reaction cascade that produces isoxazolines in high yield.
Collapse
Affiliation(s)
- Chaolun Liu
- Chemistry Department, University of Hawaii at Manoa, 2545 The Mall, Honolulu, Hawaii 96822, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, 236 Brown Laboratory, Newark, Delaware 19716, United States
| | - Casey A Rowland
- Department of Chemistry and Biochemistry, University of Delaware, 236 Brown Laboratory, Newark, Delaware 19716, United States
| | - Marcus A Tius
- Chemistry Department, University of Hawaii at Manoa, 2545 The Mall, Honolulu, Hawaii 96822, United States
| |
Collapse
|
12
|
Dong J, Zhang S. Synthesis of 2,2,2‐Trifluoroethyl Oxazoles, Oxazolines and Furans via Alkyne Oxytrifluoromethylation. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jia‐Jia Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 People's Republic of China
| | - Song‐Lin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 People's Republic of China
| |
Collapse
|
13
|
Zhang H, Xiao C, Zhang S, Zhang X. Radical C−H Bond Trifluoromethylation of Alkenes by High‐Valent Copper(III) Trifluoromethyl Compounds. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Hao‐Ran Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 People's Republic of China
| | - Chang Xiao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 People's Republic of China
| | - Song‐Lin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 People's Republic of China
| | - Xiaoming Zhang
- School of Food Science and TechnologyJiangnan University Wuxi 214122 People's Republic of China
| |
Collapse
|
14
|
Zhang SL, Dong JJ. Hydrogen-Bonding-Assisted α-F Elimination from Cu–CF3 for in Situ Generation of R3N·HF Reagents: Reaction Design and Applications. Org Lett 2019; 21:6893-6896. [DOI: 10.1021/acs.orglett.9b02516] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Song-Lin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jia-Jia Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
15
|
Li F, Lin D, He T, Zhong W, Huang J. Electrochemical Decarboxylative Trifluoromethylation of
α, β‐
Unsaturated Carboxylic Acids with CF
3
SO
2
Na. ChemCatChem 2019. [DOI: 10.1002/cctc.201900438] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fang‐Yuan Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Wushan, Tianhe, Guangzhou 510640 P.R. China
| | - Dian‐Zhao Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Wushan, Tianhe, Guangzhou 510640 P.R. China
| | - Tian‐Jun He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Wushan, Tianhe, Guangzhou 510640 P.R. China
| | - Wei‐Qiang Zhong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Wushan, Tianhe, Guangzhou 510640 P.R. China
| | - Jing‐Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Wushan, Tianhe, Guangzhou 510640 P.R. China
| |
Collapse
|
16
|
Xiao C, Zhang SL. Isolation of OH-bridged Ag(i)/Cu(iii) and ion-pair Cu(i)/Cu(iii) trifluoromethyl complexes with monophosphines. Dalton Trans 2019; 48:848-853. [DOI: 10.1039/c8dt03876g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unusual Ag(i)–Cu(iii) trifluoromethyl complex is isolated and characterized, featuring linear Ag(i) and square planar Cu(iii) units that are bridged by a hydroxide ligand.
Collapse
Affiliation(s)
- Chang Xiao
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Song-Lin Zhang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
17
|
Zhang SL, Xiao C, Wan HX, Zhang X. General and selective syn-carboxylation-trifluoromethylation of terminal alkynes: application to the late-stage modification of dehydrocholic acid. Chem Commun (Camb) 2019; 55:4099-4102. [PMID: 30887991 DOI: 10.1039/c9cc01173k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and selective syn-carboxylation-trifluoromethylation across the triple bond of terminal alkynes is developed by virtue of a reactive Cu(iii)–CF3 complex, which produces a broad range of biologically active trifluoromethylated enol esters with excellent regio- and stereoselectivity.
Collapse
Affiliation(s)
- Song-Lin Zhang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Chang Xiao
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Hai-Xing Wan
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Xiaoming Zhang
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|