1
|
Murelli RP, Berkowitz AJ, Zuschlag DW. Carbocycloaddition Strategies for Troponoid Synthesis. Tetrahedron 2023; 130:133175. [PMID: 36777111 PMCID: PMC9910567 DOI: 10.1016/j.tet.2022.133175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Tropone is the prototypical aromatic 7-membered ring, and can be found in virtually any undergraduate textbook as a key example of non-benzenoid aromaticity. Aside from this important historical role, tropone is also of high interest as a uniquely reactive synthon in complex chemical synthesis as well as a valuable chemotype in drug design. More recently, there has been growing interest in the utility of tropones for catalysis and material science. Thus, synthetic strategies capable of synthesizing functional tropones are key to fully exploiting the potential of this aromatic ring system. Cycloaddition reactions are particularly powerful methods for constructing carbocycles, and these strategies in turn have proven to be powerful for generating troponoids. The following review article provides an overview of strategies for troponoids wherein the 7-membered carbocycle is generated through a cycloaddition reaction. Representative examples of each strategy are also provided.
Collapse
Affiliation(s)
- Ryan P Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States
| | - Alex J Berkowitz
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States
| | - Daniel W Zuschlag
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States
| |
Collapse
|
2
|
Llobat A, Escorihuela J, Ramírez de Arellano C, Fustero S, Medio-Simón M. Intramolecular rhodium-catalysed [2 + 2 + 2] cycloaddition of linear chiral N-bridged triynes: straightforward access to fused tetrahydroisoquinoline core. Org Biomol Chem 2022; 20:2433-2445. [PMID: 35274117 DOI: 10.1039/d2ob00340f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A route for the preparation of merged symmetrical tetrahydroisoquinolines with central chirality through a rhodium-catalyzed intramolecular [2 + 2 + 2] cycloaddition involving enantiopure triynes as substrates is described. The results show that linear triynes lacking a 3-atom tether can undergo efficient cyclisation. The N-tethered 1,7,13-triynes used in our approach were easily prepared from readily accessible chiral homopropargyl amides, the basic building blocks in our approach, which were efficiently obtained by diastereoselective addition of propargyl magnesium bromide to Ellman imines. Additional substitution at the benzene rings could be attained when substituted triynes at the terminal triple bonds were employed, giving access to more complex tetrahydroisoquinolines after the rhodium-catalyzed intramolecular [2 + 2 + 2] cycloaddition. Among the different transition-metal catalysts, the Wilkinson complex (RhCl(PPh3)3) afforded higher yields in the cyclisation of linear triynes; however, triynes bearing a Br substituent at the terminal positions underwent the cyclisation more efficiently in the presence of [RhCl(CO)2]2.
Collapse
Affiliation(s)
- Alberto Llobat
- Departamento de Química Orgánica, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Carmen Ramírez de Arellano
- Departamento de Química Orgánica, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Santos Fustero
- Departamento de Química Orgánica, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Mercedes Medio-Simón
- Departamento de Química Orgánica, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| |
Collapse
|
3
|
Wang JS, Wang Q, Zhu Y, Gao Q, Ying J, Wu XF. Cobalt-catalyzed carbonylative cycloaddition of substituted diynes to access complexed polycyclic compounds. Org Chem Front 2021. [DOI: 10.1039/d1qo00725d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cobalt-catalyzed domino Pauson–Khand and [4 + 2] cycloaddition of substituted diynes has been developed for the rapid construction of complexed polycyclic ring systems.
Collapse
Affiliation(s)
- Jian-Shu Wang
- Department of Chemistry
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Qi Wang
- Department of Chemistry
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Yiwen Zhu
- Department of Chemistry
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Qian Gao
- Department of Chemistry
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Jun Ying
- Department of Chemistry
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- 116023 Dalian
- China
| |
Collapse
|
4
|
Trost BM, Zuo Z, Schultz JE. Transition-Metal-Catalyzed Cycloaddition Reactions to Access Seven-Membered Rings. Chemistry 2020; 26:15354-15377. [PMID: 32705722 DOI: 10.1002/chem.202002713] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/12/2020] [Indexed: 02/06/2023]
Abstract
The efficient and selective synthesis of functionalized seven-membered rings remains an important pursuit within synthetic organic chemistry, as this motif appears in numerous drug-like molecules and natural products. Use of cycloaddition reactions remains an attractive approach for their construction within the perspective of atom and step economy. Additionally, the ability to combine multiple components in a single reaction has the potential to allow for efficient combinatorial strategies of diversity-oriented synthesis. The inherent entropic penalty associated with achieving these transformations has impressively been overcome with development of catalysis, whereby the reaction components can be pre-organized through activation by transition-metal-catalysis. The fine-tuning of metal/ligand combinations as well as reaction conditions allows for achieving chemo-, regio-, diastereo- and enantioselectivity in these transformations. Herein, we discuss recent advances in transition-metal-catalyzed construction of seven-membered rings via combination of 2-4 components mediated by a variety of metals. An emphasis is placed on the mechanistic aspects of these transformations to both illustrate the state of the science and to highlight the unique application of novel processes of transition-metals in these transformations.
Collapse
Affiliation(s)
- Barry M Trost
- Department of Chemistry, Stanford University, Stanford, California, 94305-5080, USA
| | - Zhijun Zuo
- Department of Chemistry, Stanford University, Stanford, California, 94305-5080, USA
| | - Johnathan E Schultz
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, 08901, USA
| |
Collapse
|
5
|
Liu Z, Wang P, Yan Z, Chen S, Yu D, Zhao X, Mu T. Rhodium-catalyzed reductive carbonylation of aryl iodides to arylaldehydes with syngas. Beilstein J Org Chem 2020; 16:645-656. [PMID: 32318121 PMCID: PMC7155901 DOI: 10.3762/bjoc.16.61] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/28/2020] [Indexed: 12/29/2022] Open
Abstract
The reductive carbonylation of aryl iodides to aryl aldehydes possesses broad application prospects. We present an efficient and facile Rh-based catalytic system composed of the commercially available Rh salt RhCl3·3H2O, PPh3 as phosphine ligand, and Et3N as the base, for the synthesis of arylaldehydes via the reductive carbonylation of aryl iodides with CO and H2 under relatively mild conditions with a broad substrate range affording the products in good to excellent yields. Systematic investigations were carried out to study the experimental parameters. We explored the optimal ratio of Rh salt and PPh3 ligand, substrate scope, carbonyl source and hydrogen source, and the reaction mechanism. Particularly, a scaled-up experiment indicated that the catalytic method could find valuable applications in industrial productions. The low gas pressure, cheap ligand and low metal dosage could significantly improve the practicability in both chemical researches and industrial applications.
Collapse
Affiliation(s)
- Zhenghui Liu
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Peng Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Zhenzhong Yan
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Suqing Chen
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Dongkun Yu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xinhui Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Tiancheng Mu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
6
|
Sasaki I, Ohmura T, Suginome M. Construction of Silicon-Containing Seven-Membered Rings by Catalytic [4 + 2 + 1] Cycloaddition through Rhodium Silylenoid. Org Lett 2020; 22:2961-2966. [DOI: 10.1021/acs.orglett.0c00690] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ikuo Sasaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Toshimichi Ohmura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Michinori Suginome
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
7
|
Nogues C, Argouarch G. Synthesis of dialkoxydiphenylsilanes via the rhodium-catalyzed hydrosilylation of aldehydes. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Abstract
The demand for halal cosmetic products among the 2.4 billion Muslim consumers worldwide is increasing. However, the demand for halal cosmetics remains unmet because cosmetics production is dominated by non-halal cosmetic manufacturers, whose production methods may not conform with the requirements of halal science. The development of halal cosmetics and the assessment of their product performance is still in its infancy. The integration of halal science in the manufacture of most cosmetic products remains inadequate. Moreover, there is a global dearth of guiding documents on the development and assessment techniques in the production of comprehensively halal cosmetics. This paper aims to abridge existing literature and knowledge of halal and cosmetic science in order to provide essential technical guidance in the manufacture of halal cosmetics. In addition, the adoption of these methods addresses the unique ethical issues associated with conformance of cosmetics’ product performance to religious practices and halal science. It highlights the applicability of established methods in skin science in the assessment of halal cosmetics.
Collapse
|
9
|
Synthesis of Aromatic Rings Embedded in Polycyclic Scaffolds by Triyne Cycloaddition: Competition between Carbonylative and Non-Carbonylative Pathways. Molecules 2019; 24:molecules24030595. [PMID: 30736454 PMCID: PMC6384885 DOI: 10.3390/molecules24030595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/02/2022] Open
Abstract
Cycloadditions have emerged as some of the most useful reactions for the formation of polycyclic compounds. The carbonylative cycloaddition of triynes can lead to carbonylative and non-carbonylative competitive pathways, each leading to the formation of an aromatic ring. We report herein the one-pot synthesis of fully- and unsymmetrically-substituted tetracyclic 6,5,7,5-troponic and 6,5,6,5-benzenoid scaffolds using pre-organized triynes showing the competition between these two pathways.
Collapse
|
10
|
Wang B, Wang Y, Wang Z, Wang J. Rh( i)-Catalyzed intramolecular [2 + 2 + 1] cycloaddition of diynes with the N-terminal of the diazo group. Org Chem Front 2019. [DOI: 10.1039/c9qo00403c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Rh(i) catalyzed [2 + 2 + 1] cycloaddition of intramolecular diynes and a diazo moiety has been reported, in which the dediazoniation does not occur and the terminal nitrogen of the diazo moiety serves as the N1 unit.
Collapse
Affiliation(s)
- Bo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Yuankai Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Zixuan Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| |
Collapse
|