1
|
Zhou P, Yang WT, Hao WJ, Jiang B. Copper(II)/DBU Relay Catalyzed Annulation of α-Carbonyl-γ-alkynyl Sulfoxonium Ylides for Accessing N-Sulfonamido 2 H-Isoindoles. Org Lett 2023; 25:8495-8500. [PMID: 37975753 DOI: 10.1021/acs.orglett.3c03479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A copper(II)/DBU relay catalyzed annulation of α-carbonyl-γ-alkynyl sulfoxonium ylides as a new class of sulfoxonium ylide reagents with sulfonyl hydrazides is reported, enabling intramolecular oxygen migration to produce a series of N-sulfonamido 2H-isoindoles with good yields. The present annulation proceeded readily by combining the Cu(II)-catalyzed 6-endo-dig oxo-cyclization with the DBU-catalyzed isochromene skeletal rearrangement, resulting in the formation of multiple new chemical bonds.
Collapse
Affiliation(s)
- Peng Zhou
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226000, China
| | - Wei-Tao Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
2
|
Yang X, Ren H, Zhou S, Li C, Liu C, Zhou Y, He G, Liu H. Rh(III)-Catalyzed Synthesis of Substituted Isoindoles through a Direct C-H Activation/[4 + 1] Annulation and Acyl Migration Cascade of Oxadiazolones with Diazo Compounds. Org Lett 2023; 25:3195-3199. [PMID: 37126790 DOI: 10.1021/acs.orglett.3c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A Rh(III)-catalyzed C-H bond activation for the synthesis of fused 2H-isoindole scaffolds from oxadiazolones with diazo compounds was developed. The reaction proceeded through C-H activation of oxadiazolones/[4 + 1] annulation, intramolecular cyclization, and an unusual acyl migration cascade to afford target scaffolds with good yields. These 2H-isoindole derivatives could be further transformed into intriguing drug privileged scaffolds.
Collapse
Affiliation(s)
- Xiaohao Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hairu Ren
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengbin Zhou
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunpu Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoyi Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhou
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxue He
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Liu B, Rao J, Liu W, Gao Y, Huo Y, Chen Q, Li X. Ligand-assisted olefin-switched divergent oxidative Heck cascade with molecular oxygen enabled by self-assembled imines. Org Chem Front 2023. [DOI: 10.1039/d3qo00316g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Divergent oxidative Heck reaction has proven to be reliable for the rapid construction of molecular complexity, while olefins switched the outcome that remained underexplored.
Collapse
Affiliation(s)
- Bairong Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jianhang Rao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Weibing Liu
- College of Chemical Engineering, Guangdong University of Petrochemical Technology, 2 Guandu Road, Maoming 525000, P. R. China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
4
|
Wang X, Weintraub RA. Recent Developments in Isoindole Chemistry. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0042-1751384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AbstractIsoindoles are highly reactive aromatic heterocycles that have a variety of important applications in areas such as medicine, analytical detection, and solar energy. Due to their highly reactive nature, isoindoles can be used to access their derivatives, which possess a diverse array of biological activities. However, their reactivity also makes isoindoles unstable and thus, difficult to prepare. Consequently, there has been a need for the development of novel methods that address some of the synthetic challenges and limitations, as well as reactions that utilize isoindoles to access potentially useful compounds. This review will give an overview of the novel reactions reported within the past decade (2012 to 2022) that involve 2H- and 1H-isoindoles and fused isoindoles as reactants, key intermediates, or products. This review is divided into two parts, with the first part focusing on the synthesis of isoindoles and the second part focusing on reactions of isoindoles. The scopes and limitations of the methods described therein will be discussed and the significance of their contributions to the literature will be highlighted. Similar reactions will also be compared.1 Introduction2 Synthesis of Isoindoles2.1 Synthesis of 2H-Isoindoles2.2 Synthesis of 1H-Isoindoles3 Reactions of Isoindoles3.1 Reactions of 2H-Isoindoles3.2 Reactions of 1H-Isoindoles4 Conclusions
Collapse
|
5
|
Jiang Z, Zhou J, Zhu H, Liu H, Zhou Y. Rh(III)-Catalyzed [5 + 1] Annulation of Indole-enaminones with Diazo Compounds To Form Highly Functionalized Carbazoles. Org Lett 2021; 23:4406-4410. [PMID: 34018745 DOI: 10.1021/acs.orglett.1c01341] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A novel Rh(III)-catalyzed C-H activation/annulation cascade of indole-enaminones with diazo compounds was reported to construct diversely functionalized carbazole frameworks. The most notable characteristic is that this transformation could smoothly furnish a novel [5 + 1] cyclization product with good to excellent yields (up to 95%), accompanied by the thorough removal of acetyl and N,N-dimethyl groups of two substrates from the target products, rather than the normally expected [4 + 2] cyclization products.
Collapse
Affiliation(s)
- Zhidong Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhui Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haoran Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
6
|
Li Y, Fang F, Zhou J, Li J, Wang R, Liu H, Zhou Y. Rhodium‐Catalyzed C−H Activation/Annulation Cascade of Aryl Oximes and Propargyl Alcohols to Isoquinoline
N
‐Oxides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuan Li
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 People's Republic of China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Feifei Fang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Jianhui Zhou
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Jiyuan Li
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Run Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Hong Liu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 People's Republic of China
| | - Yu Zhou
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 People's Republic of China
| |
Collapse
|
7
|
Li J, Fang F, Wang R, Li Y, Xu B, Liu H, Zhou Y. A Rh(iii)-catalyzed C–H activation/regiospecific annulation cascade of benzoic acids with propargyl acetates to unusual 3-alkylidene-isochromanones. Org Chem Front 2021. [DOI: 10.1039/d1qo00387a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a new approach to synthesize isochromanones with benzoic acids and propargyl acetates, which introducing an unusual exocyclic C–C double bond at the 3-position with high regioselectivity and moderate to excellent yields.
Collapse
Affiliation(s)
- Jiyuan Li
- Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
- State Key Laboratory of Drug Research
| | - Feifei Fang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Run Wang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Yuan Li
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Bin Xu
- Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
| | - Hong Liu
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Yu Zhou
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| |
Collapse
|
8
|
Taheri-Ledari R, Maleki A. Magnetic nanocatalysts utilized in the synthesis of aromatic pharmaceutical ingredients. NEW J CHEM 2021. [DOI: 10.1039/d0nj06022d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review covers recent developments in nanoscale magnetic catalytic systems and their applications in facilitating organic synthetic reactions of aromatic pharmaceutical ingredients.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory
- Department of Chemistry
- Iran University of Science and Technology
- Tehran 16846-13114
- Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory
- Department of Chemistry
- Iran University of Science and Technology
- Tehran 16846-13114
- Iran
| |
Collapse
|
9
|
Deng G, Liu T, Wang Y, Liu B, Tan Q, Xu B. α‐Iminonitriles: Composite Functional Groups for Functionalization of Pyrene. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guigang Deng
- Department of Chemistry Innovative Drug Research Center Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Tianqi Liu
- School of Medicine Shanghai University Shanghai 200444 P. R. China
| | - Yuqin Wang
- Department of Chemistry Innovative Drug Research Center Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Bingxin Liu
- Department of Chemistry Innovative Drug Research Center Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Qitao Tan
- Department of Chemistry Innovative Drug Research Center Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Bin Xu
- Department of Chemistry Innovative Drug Research Center Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China
- School of Medicine Shanghai University Shanghai 200444 P. R. China
| |
Collapse
|
10
|
Shu Z, Zhou J, Li J, Cheng Y, Liu H, Wang D, Zhou Y. Rh(III)-Catalyzed Dual C-H Functionalization/Cyclization Cascade by a Removable Directing Group: A Method for Synthesis of Polycyclic Fused Pyrano[ de]Isochromenes. J Org Chem 2020; 85:12097-12107. [PMID: 32894019 DOI: 10.1021/acs.joc.0c01228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An interesting Rh(III)-catalyzed dual C-H functionalization/cyclization cascade of azomethine imine with diazophosphonate by a removable directing group for the synthesis of highly fused pyrano[de]isochromene has been achieved. The transformation shows that the desired pyrano[de]isochromenes with two oxygen atoms on its core scaffold could be constructed with good to excellent yields (up to 86%) via a facile one-pot, multiple-step cascade reaction, along with broad generality and versatility.
Collapse
Affiliation(s)
- Zhihao Shu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.,State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jianhui Zhou
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Junyou Li
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yilang Cheng
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Hong Liu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.,State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Dechuan Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yu Zhou
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
11
|
Rahimi J, Taheri-Ledari R, Maleki A. Cellulose-Supported Sulfonated Magnetic Nanoparticles: Utilized for One-pot Synthesis of α-Iminonitrile Derivatives. Curr Org Synth 2020; 17:288-294. [PMID: 32208119 DOI: 10.2174/1570179417666200324184936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/15/2019] [Accepted: 02/07/2020] [Indexed: 01/02/2023]
Abstract
ntroduction: An instrumental strategy for α-iminonitrile derivatives preparation by Fe3O4@cellulose-OSO3H (MCSA) as an eco-friendly nanocatalyst and oxidative agent in aerobic condition, is presented. MATERIALS AND METHODS Through this method, a one-pot three-component condensation reaction of various aldehydes, primary amines and trimethylsilylcyanide (TMSCN) were applied to synthesize the desired products. It was performed in absolute ethanol and under a mild condition by using the presented nanocatalyst. High reaction yields were obtained through using the presented magnetic agent, as well. Moreover, the threecomponent reactions were executed using accessible and economical precursors. The convenient separation and recyclability of the used nanocatalyst were also precisely investigated. RESULTS AND DISCUSSION In this research, we identified novel α-iminonitrile derivatives using 1H NMR, 13C NMR, CHN, and FT-IR analyses, as well. In order to determine the well-known derivatives, we used FT-IR method as well as comparing their melting points with those of reported. CONCLUSION In summary, an extremely efficient method was used for the environmentally-friendly synthesis of α-iminonitrile derivatives that are important bioactive substances. The catalytic oxidative coupling reaction afforded the products via a one-pot three-component condensation reaction of various aldehydes, primary amines and TMSCN with great reaction yields, in ethanol under mild conditions.
Collapse
Affiliation(s)
- Jamal Rahimi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
12
|
Liu L, Li J, Dai W, Gao F, Chen K, Zhou Y, Liu H. Rhodium(III)-Catalyzed Redox-Neutral [3+3] Annulation of N-nitrosoanilines with Cyclopropenones: A Traceless Approach to Quinolin-4(1 H)-One Scaffolds. Molecules 2020; 25:molecules25020268. [PMID: 31936532 PMCID: PMC7024356 DOI: 10.3390/molecules25020268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 11/25/2022] Open
Abstract
A traceless approach to quinolin-4(1H)-one scaffolds through Rh(III)-catalyzed redox-neutral [3+3] cyclization of N-nitrosoanilines with cyclopropenones has been achieved. This protocol features short reaction time and atom-economical combination without extra additives, which can be further applied in the construction of privileged heterocyclic compounds in pharmaceutical chemistry.
Collapse
Affiliation(s)
- Lingjun Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (L.L.); (W.D.)
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (J.L.); (F.G.)
| | - Jiyuan Li
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (J.L.); (F.G.)
| | - Wenhao Dai
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (L.L.); (W.D.)
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (J.L.); (F.G.)
| | - Feng Gao
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (J.L.); (F.G.)
| | - Kaixian Chen
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (L.L.); (W.D.)
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (J.L.); (F.G.)
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China
- Correspondence: (K.C.); (Y.Z.); (H.L.); Tel.: +86-21-5080-7042 (H.L.)
| | - Yu Zhou
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (J.L.); (F.G.)
- Correspondence: (K.C.); (Y.Z.); (H.L.); Tel.: +86-21-5080-7042 (H.L.)
| | - Hong Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (L.L.); (W.D.)
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (J.L.); (F.G.)
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China
- Correspondence: (K.C.); (Y.Z.); (H.L.); Tel.: +86-21-5080-7042 (H.L.)
| |
Collapse
|
13
|
Cheng Y, Han X, Li J, Zhou Y, Liu H. A removable directing group-assisted Rh(iii)-catalyzed direct C–H bond activation/annulation cascade to synthesize highly fused isoquinolines. Org Chem Front 2020. [DOI: 10.1039/d0qo00786b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A removable directing group-assisted Rh(iii)-catalyzed direct C–H bond activation/annulation cascade was developed to synthesize highly fused isoquinolines with good to excellent yields and a good functional group tolerance.
Collapse
Affiliation(s)
- Yilang Cheng
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| | - Xu Han
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| | - Junyou Li
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| | - Yu Zhou
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| | - Hong Liu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| |
Collapse
|
14
|
Qi B, Li L, Wang Q, Zhang W, Fang L, Zhu J. Rh(III)-Catalyzed Coupling of N-Chloroimines with α-Diazo-α-phosphonoacetates for the Synthesis of 2 H-Isoindoles. Org Lett 2019; 21:6860-6863. [PMID: 31423795 DOI: 10.1021/acs.orglett.9b02501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report herein the first use of N-chloroimines as effective synthons for directed C-H functionalization. Rh(III)-catalyzed coupling of N-chloroimines with α-diazo-α-phosphonoacetates allows for efficient dechlorinative/dephosphonative access to 2H-isoindoles. Further deesterification under Ni(II) catalysis enables the complete elimination of reactivity-assisting groups and full exposure of reactivity of C3 and N2 ring atoms for attaching structurally distinct appendages.
Collapse
Affiliation(s)
- Bing Qi
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China
| | - Lei Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China
| | - Qi Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wenjing Zhang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China
| | - Lili Fang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|