1
|
Kluga R, Kinens A, Suna E. Chiral 4-MeO-Pyridine (MOPY) Catalyst for Enantioselective Cyclopropanation: Attenuation of Lewis Basicity Leads to Improved Catalytic Efficiency. Chemistry 2024; 30:e202301136. [PMID: 37781964 DOI: 10.1002/chem.202301136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
The design of pyridine-derived organocatalysts aims at the increase of their Lewis basicity, however such an approach is not always efficient. For example, strongly Lewis basic DMAP is completely inefficient as catalyst in the cyclopropanation reaction. Herein we disclose an alternative approach that relies on attenuation of DMAP Lewis basicity. Specifically, the replacement of 4-dimethylamino substituent in DMAP for 4-MeO group delivered a highly efficient catalyst for cyclopropanation of electron-deficient olefins with α-bromoketones. Kinetic studies provide compelling evidence that the superior catalytic efficiency of 4-MeO pyridine (MOPY) is to be attributed to the favorable balance between Lewis basicity and leaving group ability. The use of chiral, enantiomerically pure MOPY catalyst has helped to achieve high enantioselectivities (up to 91 : 9 er) in the previously unreported pyridine-catalyzed cyclopropanation reaction.
Collapse
Affiliation(s)
- Rihards Kluga
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
- Department of Chemistry, University of Latvia, Jelgavas 1, LV-1004, Riga, Latvia
| | - Artis Kinens
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
- Department of Chemistry, University of Latvia, Jelgavas 1, LV-1004, Riga, Latvia
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
- Department of Chemistry, University of Latvia, Jelgavas 1, LV-1004, Riga, Latvia
| |
Collapse
|
2
|
Döring C, Jones PG. Crystal structures of the isotypic complexes bis-(morpholine)-gold(I) chloride and bis-(morpholine)-gold(I) bromide. Acta Crystallogr E Crystallogr Commun 2023; 79:1161-1165. [PMID: 38313121 PMCID: PMC10833401 DOI: 10.1107/s2056989023009702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 02/06/2024]
Abstract
The compounds bis-(morpholine-κN)gold(I) chloride, [Au(C4H9NO)2]Cl, 1, and bis-(morpholine-κN)gold(I) bromide, [Au(C4H9NO)2]Br, 2, crystallize isotypically in space group C2/c with Z = 4. The gold atoms, which are axially positioned at the morpholine rings, lie on inversion centres (so that the N-Au-N coordination is exactly linear) and the halide anions on twofold axes. The residues are connected by a classical hydrogen bond N-H⋯halide and by a short gold⋯halide contact to form a layer structure parallel to the bc plane. The morpholine oxygen atom is not involved in classical hydrogen bonding.
Collapse
Affiliation(s)
- Cindy Döring
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
| | - Peter G. Jones
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
| |
Collapse
|
3
|
Placidi S, D'Intignano TM, Salvio R. Preparation of Chiral
DMAP
Derivatives and Investigation on Their Enantioselective Catalytic Activity in Benzazetidine Synthesis and Kinetic Resolutions of Alcohols. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Simone Placidi
- Dipartimento di Chimica Sapienza Università di Roma, P.le Aldo Moro 5 Roma Italy
| | | | - Riccardo Salvio
- Dipartimento di Scienze e Tecnologie Chimiche Università “Tor Vergata”, Via della Ricerca Scientifica 1 Roma Italy
- ISB ‐ CNR Sezione Meccanismi di Reazione Università La Sapienza Roma
| |
Collapse
|
4
|
Kinens A, Balkaitis S, Ahmad OK, Piotrowski DW, Suna E. Acylative Dynamic Kinetic Resolution of Secondary Alcohols: Tandem Catalysis by HyperBTM and Bäckvall's Ruthenium Complex. J Org Chem 2021; 86:7189-7202. [PMID: 33974415 DOI: 10.1021/acs.joc.1c00545] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Non-enzymatic dynamic kinetic resolution (DKR) of secondary alcohols by enantioselective acylation using an isothiourea-derived HyperBTM catalyst and racemization of slowly reacting alcohol by Bäckvall's ruthenium complex is reported. The DKR approach features high enantioselectivities (up to 99:1), employs easy-to-handle crystalline 4-nitrophenyl isobutyrate as the acylating reagent, and proceeds at room temperature and under an ambient atmosphere. The stereoinduction model featuring cation-π system interactions between the acylated HyperBTM catalyst and π electrons of an alcohol aryl subunit has been elaborated by DFT calculations.
Collapse
Affiliation(s)
- Artis Kinens
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia.,Department of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| | - Simonas Balkaitis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia.,Department of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| | - Omar K Ahmad
- Worldwide Medicinal Chemistry, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - David W Piotrowski
- Worldwide Medicinal Chemistry, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia.,Department of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| |
Collapse
|
5
|
Zhao Y, Li L, Zhou Z, Chen M, Yang W, Luo H. Copper catalyzed five-component domino strategy for the synthesis of nicotinimidamides. Org Biomol Chem 2021; 19:3868-3872. [PMID: 33949559 DOI: 10.1039/d1ob00162k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A library of medicinally and synthetically important nicotinimidamides was synthesized by a copper-catalyzed multicomponent domino reaction of oxime esters, terminal ynones, sulfonyl azides, aryl aldehydes and acetic ammonium. Its synthetic pathway involves the formation of a highly reactive N-sulfonyl acetylketenimine, characterized by high selectivity, combinations of potential nucleophiles and electrophiles, mild reaction conditions and a wide substrate scope, and is a rare five-component example of a CuAAC/ring-opening reaction.
Collapse
Affiliation(s)
- Yu Zhao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Li Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Zitong Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Man Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Weiguang Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China. and The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China and Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong 524023, China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China. and The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China and Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong 524023, China
| |
Collapse
|
6
|
Cirujano FG, López-Maya E, Almora-Barrios N, Rubio-Gaspar A, Martín N, Navarro JAR, Martí-Gastaldo C. Diffusion Control in Single-Site Zinc Reticular Amination Catalysts. Inorg Chem 2020; 59:18168-18173. [DOI: 10.1021/acs.inorgchem.0c02624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Francisco G. Cirujano
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez n° 2, 46980 Paterna, Valencia, Spain
| | - Elena López-Maya
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez n° 2, 46980 Paterna, Valencia, Spain
| | - Neyvis Almora-Barrios
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez n° 2, 46980 Paterna, Valencia, Spain
| | - Ana Rubio-Gaspar
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez n° 2, 46980 Paterna, Valencia, Spain
| | - Nuria Martín
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez n° 2, 46980 Paterna, Valencia, Spain
| | - Jorge A. R. Navarro
- Department of Inorganic Chemistry, University of Granada, Avenida de Fuente Nueva, s/n, 18071 Granada, Spain
| | - Carlos Martí-Gastaldo
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez n° 2, 46980 Paterna, Valencia, Spain
| |
Collapse
|
7
|
Wang X, Long CY, Su MH, Qu YX, Li SH, Zhang XJ, Huang SJ, Wang XQ. Rapid Amination of Methoxy Pyridines with Aliphatic Amines. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xia Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, and Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, 2 Lushan Nan Road, Changsha, Hunan 410082, P. R. China
| | - Cheng-Yu Long
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, and Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, 2 Lushan Nan Road, Changsha, Hunan 410082, P. R. China
| | - Min-Hui Su
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, and Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, 2 Lushan Nan Road, Changsha, Hunan 410082, P. R. China
| | - Yi-Xin Qu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, and Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, 2 Lushan Nan Road, Changsha, Hunan 410082, P. R. China
| | - Shen-Huan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, and Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, 2 Lushan Nan Road, Changsha, Hunan 410082, P. R. China
| | - Xiao-Jing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, and Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, 2 Lushan Nan Road, Changsha, Hunan 410082, P. R. China
| | - Si-Jie Huang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, and Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, 2 Lushan Nan Road, Changsha, Hunan 410082, P. R. China
| | - Xue-Qiang Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, and Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, 2 Lushan Nan Road, Changsha, Hunan 410082, P. R. China
| |
Collapse
|