1
|
Hajra C, Datta A. Substitutional control of non-statistical dynamics in the thermal deazetization of tetracyclic azo compounds. Phys Chem Chem Phys 2024; 26:28161-28170. [PMID: 39498517 DOI: 10.1039/d4cp03447c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Dynamical control of reactivity for the deazetization of endo,endo-9,10-diazatetracyclo[3.3.2.02,4.06,8]dec-9-ene (3) is studied using on-the-fly quasi-classical trajectory (QCT) calculations at the density functional theory (DFT) level. Two degenerate homotropilidenes, 4 and 5, are formed simultaneously from a single transition state (TS). The ratio of the cyclohexadienyl substituted product, 4, and the dynamical product, i.e. bridgehead substituted product, 5, can be neatly controlled by tuning the topology of the potential energy surface (PES). A steep descent post-TS favors the cyclohexadienyl substituted product while a shallow descent increases the dynamical outcome. Chemical demonstration of the same is achieved by symmetrical and asymmetrical substitution of functional groups along the cleaving (C3-C4) bond. Asymmetric mono-functionalization makes the PES broader, thereby reducing the slope post-TS. This creates a favourable situation for the dynamical products, 5b-5d, to become the major ones. On the contrary, symmetric bi-functionalization makes the cyclohexadienyl substituted product, 4m-4o, overwhelmingly (>85%) predominating. As a corollary to this phenomenon, substitution of the C3-C4 bond by the heavier isotopologues of H/C restricts its motion along the IRC path by the Newtonian kinetic isotope effect. This facilitates bond-opening along the C10-C11 dynamical pathway. Hence, for isotopic substitution, the situation is reversed and the bifunctionalized 3 is more dynamically activated. Simultaneous substitution by the heavier isotopologue of C and H causes deviation from the geometric mean of individual isotopic substitution towards the dynamical product, 5. Therefore, the dynamic control in 3 becomes prominent either via functional group asymmetry or through a Newtonian kinetic isotope effect for symmetric bifunctionalization.
Collapse
Affiliation(s)
- Chandralekha Hajra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur - 700032, Kolkata, West Bengal, India.
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur - 700032, Kolkata, West Bengal, India.
| |
Collapse
|
2
|
Kundu S, Jana D, Mandal N, Mondal A, Murmu R, Roy NK, Datta A, Bisai A. Biomimetic total synthesis of the reported structure of (+)-selaginedorffone B. Chem Sci 2024:d4sc04103h. [PMID: 39246359 PMCID: PMC11376052 DOI: 10.1039/d4sc04103h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/20/2024] [Indexed: 09/10/2024] Open
Abstract
The first enantioselective total synthesis of the reported structure of the structurally unique aromatic tetraterpenoid of anti-cancer potential, (+)-selaginedorffone B (2), has been accomplished from two modified abietane diterpenoids through an intermolecular Diels-Alder reaction between a bio-inspired diene 3 (HOMO counterpart) and dienophile 4 (corresponding LUMO counterpart) in a 23-step sequence, whereas the core framework of the monomeric abietane diterpenoid was constructed via alkyne-activated ene-cyclization. Computational analysis was conducted to reveal the intricate regio and diastereoselectivity of this novel Diels-Alder reaction, strengthening the experimental results. The absolute configuration of the synthesized molecule was validated through X-ray studies of late-stage intermediates as well as comprehensive 2D NMR analysis.
Collapse
Affiliation(s)
- Sourav Kundu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462 066 Madhya Pradesh India
| | - Debgopal Jana
- Department of Chemistry, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Nadia Kalyani 741 246 West Bengal India
| | - Nilangshu Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road, Jadavpur 700032 Kolkata West Bengal India
| | - Ayan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Nadia Kalyani 741 246 West Bengal India
| | - Ranjit Murmu
- Department of Chemistry, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Nadia Kalyani 741 246 West Bengal India
| | - Nanda Kishore Roy
- Department of Chemistry, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Nadia Kalyani 741 246 West Bengal India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road, Jadavpur 700032 Kolkata West Bengal India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462 066 Madhya Pradesh India
- Department of Chemistry, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Nadia Kalyani 741 246 West Bengal India
| |
Collapse
|
3
|
Kadiyam RK, Sangolkar AA, Faizan M, Pawar R. Bispericyclic Ambimodal Dimerization of Pentafulvene: The Origin of Asynchronicity and Kinetic Selectivity of the Endo Transition State. J Org Chem 2024; 89:6813-6825. [PMID: 38661667 DOI: 10.1021/acs.joc.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The propensity of fulvenes to undergo dimerization has long been known, although the in-depth mechanism and electronic behavior during dimerization are still elusive. Herein, we made an attempt to gain insights into the reactivity of pentafulvene for Diels-Alder (DA) and [6 + 4]-cycloadditions via conventional and ambimodal routes. The result emphasizes that pentafulvene dimerization preferentially proceeds through a unique bifurcation mechanism where two DA pathways merge together to produce two degenerate [4 + 2]-cycloadducts from a single TS. Despite the [6 + 4]-cycloadduct being thermodynamically preferred, [4 + 2]-cycloaddition reactions are kinetically driven. Singlet biradicaloid is involved in through-space 6e- delocalization as a secondary orbital interaction that originates asynchronicity and stabilizes the bispericyclic transition state (TS). The transformation of various actively participating intrinsic bonding orbitals (IBOs) unambiguously forecasts the formation of multiple products from a single TS and rationalizes the mechanism of ambimodal reactions that are rather difficult to probe with other analyses. The changes in active IBOs clearly distinguish the conventional reactions from bifurcation reactions and can be employed to characterize and confirm the ambimodal mechanism. This report gains a crucial theoretical insight into the mechanism of bifurcation, the origin of asynchronicity, and electronic behavior in ambimodal TS, which will certainly be of enormous value for future studies.
Collapse
Affiliation(s)
- Rama Krishna Kadiyam
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India
| | - Akanksha Ashok Sangolkar
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India
| | - Mohmmad Faizan
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India
| | - Ravinder Pawar
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India
| |
Collapse
|
4
|
Tyukina SP, Velmiskina JA, Dmitrienko AO, Medvedev MG. Binomial Uncertainty in Molecular Dynamics-Based Reactions Analysis. J Phys Chem Lett 2024; 15:2105-2110. [PMID: 38358803 DOI: 10.1021/acs.jpclett.3c03540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Molecular Dynamics-based reaction analysis is an indispensable tool for studying processes defying the transition-state theory (TST), where the product ratios do not follow energies of transition states. The main class of such processes is ambimodal reactions, which have a post-transition-state bifurcation, so that several products form via a single transition state. Multiple runs of molecular dynamics allow one to sample the space of possibilities and ultimately predict the product ratio without relying on TST; however, no techniques for estimating the reliability of the prediction were proposed so far. Here we show that dynamics runs follow the same rules as die rolls, which paves a simple way for estimating their uncertainty and, accordingly, the number of runs necessary to achieve the required accuracy. Remarkably, we find that the majority of such studies carried out in the last 5 years use far too few runs, so that the product ratios predicted in them can be off by >50% in more than 50% of cases.
Collapse
Affiliation(s)
- Sofya P Tyukina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
- National Research University Higher School of Economics, Myasnitskaya Street 20, 101000 Moscow, Russian Federation
| | - Julia A Velmiskina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Artem O Dmitrienko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russian Federation
| | - Michael G Medvedev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| |
Collapse
|
5
|
He J, Zhang J, Li Y, Han YB, Li M, Zhao X. Insights into Synergistic Effects of Counterion and Ligand on Diastereoselectivity Switch in Gold-Catalyzed Post-Ugi Ipso-Cyclization. ACS OMEGA 2023; 8:22637-22645. [PMID: 37396265 PMCID: PMC10308395 DOI: 10.1021/acsomega.3c01279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
The concept of diastereoselectivity switch in gold catalysis is investigated, which primarily depends on the effects of ligand and counterion. The origins of gold-catalyzed post-Ugi ipso-cyclization for the diastereoselective synthesis of spirocyclic pyrrol-2-one-dienone have been explored with density functional theory calculations. The reported mechanism emphasized the importance of the cooperation of ligand and counterion in diastereoselectivity switch, leading to the stereocontrolling transition states. Furthermore, the nonbonding interactions primarily between the catalyst and the substrate play a significant role in the cooperation of ligand and counterion. This work would be useful to further understand the reaction mechanism of gold-catalyzed cyclization and the effects of ligand and counterion.
Collapse
Affiliation(s)
- Jun He
- Institute
of Molecular Science and Applied Chemistry, School of Chemistry, State
Key Laboratory of Electrical Insulation and Power Equipment &
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of
Condensed Matter, Xi’an Jiaotong
University, Xi’an 710049, China
| | - Jie Zhang
- Institute
of Molecular Science and Applied Chemistry, School of Chemistry, State
Key Laboratory of Electrical Insulation and Power Equipment &
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of
Condensed Matter, Xi’an Jiaotong
University, Xi’an 710049, China
| | - Yunhe Li
- School
of Materials Science and Engineering, Lanzhou
Jiaotong University, Lanzhou 730070, China
| | - Yan-bo Han
- Institute
of Molecular Science and Applied Chemistry, School of Chemistry, State
Key Laboratory of Electrical Insulation and Power Equipment &
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of
Condensed Matter, Xi’an Jiaotong
University, Xi’an 710049, China
| | - Mengyang Li
- School
of Physics, Xidian University, Xi’an 710071, China
| | - Xiang Zhao
- Institute
of Molecular Science and Applied Chemistry, School of Chemistry, State
Key Laboratory of Electrical Insulation and Power Equipment &
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of
Condensed Matter, Xi’an Jiaotong
University, Xi’an 710049, China
| |
Collapse
|
6
|
Yuan M, Gutierrez O. Mechanisms, Challenges, and Opportunities of Dual Ni/Photoredox-Catalyzed C(sp 2)-C(sp 3) Cross-Couplings. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2022; 12:e1573. [PMID: 35664524 PMCID: PMC9162266 DOI: 10.1002/wcms.1573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/09/2021] [Indexed: 12/28/2022]
Abstract
The merging of photoredox and nickel catalysis has revolutionized the field of C-C cross-coupling. However, in comparison to the development of synthetic methods, detailed mechanistic investigations of these catalytic systems are lagging. To improve the mechanistic understanding, computational tools have emerged as powerful tools to elucidate the factors controlling reactivity and selectivity in these complex catalytic transformations. Based on the reported computational studies, it appears that the mechanistic picture of catalytic systems is not generally applicable, but is rather dependent on the specific choice of substrate, ligands, photocatalysts, etc. Given the complexity of these systems, the need for more accurate computational methods, readily available and user-friendly dynamics simulation tools, and data-driven approaches is clear in order to understand at the molecular level the mechanisms of these transformations. In particular, we anticipate that such improvement of theoretical methods will become crucial to advance the understanding of excited-state properties and dynamics of key species, as well as to enable faster and unbiased exploration of reaction pathways. Further, with greater collaboration between computational, experimental, and spectroscopic communities, the mechanistic investigation of photoredox/Ni dual-catalytic reactions is expected to thrive quickly, facilitating the design of novel catalytic systems and promoting our understanding of the reaction selectivity.
Collapse
|
7
|
Li Y, Zhang J, Zhao X. Importance of additive effects on the reactivity of Ag catalyzed domino cyclization: a computational chemistry survey. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Li Y, Zhang J, Zhao X, Wang Y. Exploring the chemistry of E/Z configuration in gold-catalyzed domino cyclization: Insights on the stereoselectivity. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Mandal N, Das A, Hajra C, Datta A. Stereoelectronic and dynamical effects dictate nitrogen inversion during valence isomerism in benzene imine. Chem Sci 2022; 13:704-712. [PMID: 35173935 PMCID: PMC8769061 DOI: 10.1039/d1sc04855d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/14/2021] [Indexed: 01/23/2023] Open
Abstract
Non-classical processes such as heavy-atom tunneling and post transition-state dynamics govern stereoselectivity for benzene imine ⇌ 1H-azepine.
Collapse
Affiliation(s)
- Nilangshu Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Ankita Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Chandralekha Hajra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| |
Collapse
|
10
|
Teynor MS, Scott W, Ess DH. Catalysis with a Skip: Dynamically Coupled Addition, Proton Transfer, and Elimination during Au- and Pd-Catalyzed Diol Cyclizations. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Matthew S. Teynor
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Windsor Scott
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Daniel H. Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
11
|
Mondal H, Ghara M, Chattaraj PK. A computational investigation of the activation of allene (H2C = C = CHR; R = H, CH3, CN) by a frustrated phosphorous/boron Lewis pair. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Tantillo DJ. Dynamic effects on organic reactivity—Pathways to (and from) discomfort. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Dean J. Tantillo
- Department of Chemistry University of California, Davis Davis California USA
| |
Collapse
|
13
|
Quijano-Quiñones RF, Guadarrama-Moreno J, Quesadas-Rojas M, Mena-Rejón GJ, Castro-Segura CS, Cáceres-Castillo D. The origin of the regiospecificity of acrolein dimerization. RSC Adv 2021; 11:7459-7465. [PMID: 35423251 PMCID: PMC8695078 DOI: 10.1039/d0ra10084f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/07/2021] [Indexed: 11/21/2022] Open
Abstract
Acrolein dimerization is a intriguing case since the reaction does not occur to form the electronically preferred regioisomeric adduct. Various explanations have been suggested to rationalize this experimental regioselectivity, however, none of these arguments had been convincing enough. In this work, the hetero Diels-Alder acrolein dimerization was theoretically investigated using DFT and MP2 methods. The influence of nucleophilic/electrophilic interactions and non-covalent interactions (NCI) in the regiospecificity of the reaction were analyzed. Our results show that the NCI at the transition state are the key factor controlling the regiospecificity in this reaction. Besides, we found that the choice of calculation method can have an effect on the prediction of the mechanism in the reaction, as all DFT methods forecast a one-step hetero Diels-Alder acrolein dimerization, while MP2 predicts a stepwise description for the lower energy reaction channel.
Collapse
Affiliation(s)
- Ramiro F Quijano-Quiñones
- Laboratorio de Química Teórica, Facultad de Química, Universidad Autónoma de Yucatán Mérida Yucatán Mexico
| | - Jareth Guadarrama-Moreno
- Laboratorio de Química Teórica, Facultad de Química, Universidad Autónoma de Yucatán Mérida Yucatán Mexico
| | - Mariana Quesadas-Rojas
- Posgrado en Ciencias del Mar y Limnología, UNAM Mexico
- Escuela Nacional de Educación Superior, UNAM Mérida Mexico
| | - Gonzalo J Mena-Rejón
- Laboratorio de Química Farmaceútica, Facultad de Química, Universidad Autónoma de Yucatán Mérida Yucatán Mexico
| | - Carolina S Castro-Segura
- Laboratorio de Química Teórica, Facultad de Química, Universidad Autónoma de Yucatán Mérida Yucatán Mexico
| | - David Cáceres-Castillo
- Laboratorio de Química Farmaceútica, Facultad de Química, Universidad Autónoma de Yucatán Mérida Yucatán Mexico
| |
Collapse
|
14
|
Mandal N, Datta A. Harnessing the Efficacy of 2-Pyridone Ligands for Pd-Catalyzed (β/γ)-C(sp 3)-H Activations. J Org Chem 2020; 85:13228-13238. [PMID: 32975420 DOI: 10.1021/acs.joc.0c02210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mechanisms of palladium-aminooxyacetic acid and 2-pyridone-enabled cooperative catalysis for the β- and γ-C(sp3)-H functionalizations of ketones are investigated with density functional theory. 2-Pyridone-assisted dissociation of the trimeric palladium acetate [Pd3(OAc)6] is found to be crucial for these catalytic pathways. The evolution of the [6,6]-membered palladacycles (Int-4) are elucidated and are active complexes in Pd(II/IV) catalytic cycles. Nevertheless, 2-pyridone acts as an external ligand, which accelerates β-C(sp3)-H activation. Computational investigations suggest that the C(sp3)-H bond activation is the rate-limiting step for both the catalytic processes. To overcome the kinetic inertness, an unsubstituted aminooxyacetic acid auxiliary is used for the β-C(sp3)-H activation pathway to favor the formation of the [5,6]-membered palladacycle intermediate, Int-IV. Among the several modeled ligands, 3-nitro-5-((trifluoromethyl)sulfonyl)pyridine-2(1H)-one (L8) is found to be highly valuable for both the (β/γ)-C(sp3)-H functionalization catalytic cycles. A favorable free energy pathway of late-stage functionalization of (R)-muscone paves the path to design other bioactive molecules.
Collapse
Affiliation(s)
- Nilangshu Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mallick Road, Kolkata 700032, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mallick Road, Kolkata 700032, India
| |
Collapse
|
15
|
Funes-Ardoiz I, Schoenebeck F. Established and Emerging Computational Tools to Study Homogeneous Catalysis—From Quantum Mechanics to Machine Learning. Chem 2020. [DOI: 10.1016/j.chempr.2020.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Laconsay CJ, Tsui KY, Tantillo DJ. Tipping the balance: theoretical interrogation of divergent extended heterolytic fragmentations. Chem Sci 2020; 11:2231-2242. [PMID: 32190279 PMCID: PMC7059201 DOI: 10.1039/c9sc05161a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/08/2020] [Indexed: 01/24/2023] Open
Abstract
Herein we interrogate a type of heterolytic fragmentation reaction called a 'divergent fragmentation' using density functional theory (DFT), natural bond orbital (NBO) analysis, ab initio molecular dynamics (AIMD), and external electric field (EEF) calculations. We demonstrate that substituents, electrostatic environment and non-statistical dynamic effects all influence product selectivity in reactions that involve divergent fragmentation pathways. Direct dynamics simulations reveal an unexpected post-transition state bifurcation (PTSB), and EEF calculations suggest that some transition states for divergent pathways can, in principle, be selectively stabilized if an electric field of the correct magnitude is oriented appropriately.
Collapse
Affiliation(s)
- Croix J Laconsay
- Department of Chemistry , University of California , Davis , CA 95616 , USA .
| | - Ka Yi Tsui
- Department of Chemistry , University of California , Davis , CA 95616 , USA .
| | - Dean J Tantillo
- Department of Chemistry , University of California , Davis , CA 95616 , USA .
| |
Collapse
|
17
|
Sangolkar AA, Pawar R. Prediction of the [4 + 2]- and [5 + 4]-cycloaddition reactions in zig-zag carbon nanotubes via an ambimodal transition state: density functional theory calculations. RSC Adv 2020; 10:11111-11120. [PMID: 35495313 PMCID: PMC9050518 DOI: 10.1039/c9ra10252c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/26/2020] [Indexed: 11/21/2022] Open
Abstract
A unique type of chemical reaction known as an ambimodal reaction has drawn tremendous attention owing to its intriguing feature of forming multiple (two or more) products from the same (single) transition state. In contrast to conventional reactions, bifurcation of the potential energy surface takes place in ambimodal reactions. Density functional theory (DFT) based calculations were performed to probe the Diels–Alder (DA) cycloaddition reactions of various carbon nanotubes (CNTs) with 1,3-butadiene. The present investigation reveals the possibility of ambimodal transition state formation on a potential energy surface (PES) corresponding to an unusual [5 + 4]-cycloadduct along with the conventional [4 + 2]-cycloadduct. The ground state of the [5 + 4]-cycloadduct obtained from butadiene and the H-terminated CNTs is a triplet (3T) state, but on the other hand the [4 + 2]-cycloadduct is a singlet (1S) state. The [5 + 4]-adduct is energetically more stable in comparison with the [4 + 2]-adduct. The possibility of the formation of the [5 + 4]-adduct is validated using frontier molecular orbitals. The length of the nanotube significantly influences the overall kinetics and thermodynamics of the reaction. A DFT study has been performed to unveil the ambimodal reaction in H-terminated CNTs.![]()
Collapse
Affiliation(s)
| | - Ravinder Pawar
- Department of Chemistry
- National Institute of Technology (NIT) Warangal
- India
| |
Collapse
|
18
|
Yang M, Wang G, Zou J, Li S. Mechanistic Insight Into the AuCN Catalyzed Annulation Reaction of Salicylaldehyde and Aryl Acetylene: Cyanide Ion Promoted Umpolung Hydroacylation/Intramolecular Oxa-Michael Addition Mechanism. Front Chem 2019; 7:557. [PMID: 31448263 PMCID: PMC6691126 DOI: 10.3389/fchem.2019.00557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/22/2019] [Indexed: 01/19/2023] Open
Abstract
The detailed mechanism of the AuCN-catalyzed annulation of salicylaldehyde (SA) and phenyl acetylene leading to isoflavanone-type complexes has been investigated via density functional theory (DFT) calculations. Reaction pathways and possible stationary points are obtained with the combined molecular dynamics and coordinate driving (MD/CD) method. Our calculations reveal that the cyanide ion promoted umpolung hydroacylation/intramolecular oxa-Michael addition mechanism is more favorable than the Au(I)/Au(III) redox mechanism proposed previously. In the umpolung mechanism, the hydroxyl of SA is found to strongly stabilize the cyanide ion involved intermediates and transition states via hydrogen bond interactions, while the Au(I) ion always acts as a counter cation. The overall reaction is exergonic by 41.8 kcal/mol. The hydroacylation of phenyl acetylene is the rate-determining step and responsible for the regioselectivity with a free energy barrier of 27.3 kcal/mol. These calculated results are in qualitative accord with the experimental findings.
Collapse
Affiliation(s)
- Manyi Yang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| | - Jingxiang Zou
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| |
Collapse
|
19
|
Marín-Luna M, Nieto Faza O, Silva López C. Gold-Catalyzed Homogeneous (Cyclo)Isomerization Reactions. Front Chem 2019; 7:296. [PMID: 31139614 PMCID: PMC6527766 DOI: 10.3389/fchem.2019.00296] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/11/2019] [Indexed: 01/09/2023] Open
Abstract
Gold is currently one of the most used metals in organometallic catalysis. The ability of gold to activate unsaturated groups in different modes, together with its tolerance to a wide range of functional groups and reaction conditions, turns gold-based complexes into efficient and highly sought after catalysts. Natural products and relevant compounds with biological and pharmaceutical activity are often characterized by complex molecular structures. (Cyclo)isomerization reactions are often a useful strategy for the generation of this molecular complexity from synthetically accessible reactants. In this review, we collect the most recent contributions in which gold(I)- and/or gold(III)-catalysts mediate intramolecular (cyclo)isomerization transformations of unsaturated species, which commonly feature allene or alkyne motifs, and organize them depending on the substrate and the reaction type.
Collapse
Affiliation(s)
- Marta Marín-Luna
- Departamento de Química Orgánica, Universidade de Vigo, Vigo, Spain
| | | | | |
Collapse
|
20
|
Chen S, Yu P, Houk KN. Ambimodal Dipolar/Diels–Alder Cycloaddition Transition States Involving Proton Transfers. J Am Chem Soc 2018; 140:18124-18131. [DOI: 10.1021/jacs.8b11080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Shuming Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Peiyuan Yu
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|