1
|
Ohwada T. 窒素原子を含む結合活性化学種の発見. YAKUGAKU ZASSHI 2023; 143:323-336. [PMID: 37005231 DOI: 10.1248/yakushi.22-00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
In this review, the authors review and explain their research on "Discovery of Bonding Active Species Containing Nitrogen Atoms" from the past to the present. The authors are interested in new chemical phenomena, especially in the activation of chemical bonds containing nitrogen atoms, and have conducted research to discover chemical bonds with new properties. The activated chemical bonds containing nitrogen atoms are the following (Fig. 1). (1) Rotationally activated C-N bonds by pyramidalization of amide nitrogen atoms (2) N-N bond cleavage ability with reduced bond strength by pyramidalization of nitrosamine nitrogen atoms (3) Transient hetero atom-N bond formation by neighboring group participation of a halogen electron to the nitrogen cation. (4) A unique carbon cation reaction involving nitrogen atoms, especially nitro groups (C-NO2 bond) and ammonium ions (C-NH3+ bond). These purely basic chemistry discoveries unexpectedly led to the creation of functional materials, especially biologically active molecules. We will explain how new chemical bonds led to the creation of new functions.
Collapse
Affiliation(s)
- Tomohiko Ohwada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
2
|
Abstract
In this contribution, we provide a comprehensive overview of acyclic twisted amides, covering the literature since 1993 (the year of the first recognized report on acyclic twisted amides) through June 2020. The review focuses on classes of acyclic twisted amides and their key structural properties, such as amide bond twist and nitrogen pyramidalization, which are primarily responsible for disrupting nN to π*C═O conjugation. Through discussing acyclic twisted amides in comparison with the classic bridged lactams and conformationally restricted cyclic fused amides, the reader is provided with an overview of amidic distortion that results in novel conformational features of acyclic amides that can be exploited in various fields of chemistry ranging from organic synthesis and polymers to biochemistry and structural chemistry and the current position of acyclic twisted amides in modern chemistry.
Collapse
Affiliation(s)
- Guangrong Meng
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jin Zhang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
3
|
Zhai L, Nara M, Otani Y, Ohwada T. Unexpectedly rigid short peptide foldamers in which NH-π and CH-π interactions are preserved in solution. Chem Commun (Camb) 2021; 57:8344-8347. [PMID: 34328149 DOI: 10.1039/d1cc02998c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NH-π and CH-π interactions, due to their weak character, are not easily identified in solution. We report a group of isolable short peptides with stable folds, in which NH-π and CH-π main chain-side chain interactions can be detected in solution by means of NMR and ATR-IR spectroscopy.
Collapse
Affiliation(s)
- Luhan Zhai
- Laboratory of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ko, Tokyo, 113-0033, Japan.
| | | | | | | |
Collapse
|
4
|
Ohwada T, Otani Y. Lactam Amide Spinning. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.1006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tomohiko Ohwada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | | |
Collapse
|
5
|
Otani Y, Park S, Ohwada T. Conformational preference of bicyclic β-amino acid dipeptides. Chirality 2020; 32:790-807. [PMID: 32239582 DOI: 10.1002/chir.23220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 11/06/2022]
Abstract
Bridged bicyclic amino acids have high potential applicability as self-organized, conformationally constrained synthetic building blocks that do not require assistance from hydrogen bond formation. We systematically investigated the intrinsic conformational propensities of dipeptides of bridged bicyclic β-amino acids by means of accelerated molecular dynamics simulation and density functional theory (DFT) calculations in methanol, chloroform, and water. While the main-chain conformation, represented by φ and θ values, is fixed by the nature of the bicyclic ring structure, rotation of the C-terminal carbonyl group (ψ) is also restricted, converging to one or two minima. In endo-type dipeptides, in which the two N- and C-terminal amides are spatially close to each other, the C-terminal amide plane is placed horizontally. In exo-type dipeptides, in which the two amides are on opposite sides of the ring plane, the C-terminal carbonyl group can take two types of positions: either parallel/antiparallel with the N-terminal carbonyl or beneath the bicyclic ring, forcing the amide NHMe moiety to lie outside of the ring. We also examined the cis-trans preference of model bicyclic amides. Although the parent amides exhibit cis-trans equilibrium without any preference, addition of a methyl group on one of the bridgehead positions tips the equilibrium towards trans.
Collapse
Affiliation(s)
- Yuko Otani
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Seokhwi Park
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiko Ohwada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Zhai L, Otani Y, Hori Y, Tomita T, Ohwada T. Peptide-based short single β-strand mimics without hydrogen bonding or aggregation. Chem Commun (Camb) 2020; 56:1573-1576. [PMID: 31930273 DOI: 10.1039/c9cc08378b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Generation of short peptides with a single β-strand structure in solution is difficult. Herein, we design a new class of single β-strand peptidic mimics that are stable without self-aggregation in protic and non-protic solvents. Introduction of one present β-strand mimic can induce and propagate the β-strand structure for at least a penta-peptide sequence.
Collapse
Affiliation(s)
- Luhan Zhai
- Laboratory of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | | | | | | | | |
Collapse
|
7
|
Su A, Wang S, Sada A, Otani Y, Zhai L, Liu X, Sayama M, Ohki R, Ohwada T. Non-naturally Occurring Helical Molecules Can Interfere with p53-MDM2 and p53-MDMX Protein-Protein Interactions. Chem Pharm Bull (Tokyo) 2019; 67:1139-1143. [PMID: 31582633 DOI: 10.1248/cpb.c19-00501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have discovered that β-amino acid homooligomers with cis- or trans-amide conformation can fold themselves into highly ordered helices. Moreover, unlike α-amino acid peptides, which are significantly stabilized by intramolecular hydrogen bonding, these helical structures are autogenous conformations that are stable without the aid of hydrogen bonding and irrespective of solvent (protic/aprotic/halogenated) or temperature. A structural overlap comparison of helical cis/trans bicyclic β-proline homooligomers with typical α-helix structure of α-amino acid peptides reveals clear differences of pitch and diameter per turn. Bridgehead substituents of the present homooligomers point outwards from the helical surface. We were interested to know whether such non-naturally occurring divergent helical molecules could mimic α-helix structures. In this study, we show that bicyclic β-proline oligomer derivatives inhibit p53-MDM2 and p53-MDMX protein-protein interactions, exhibiting MDM2-antagonistic and MDMX-antagonistic activities.
Collapse
Affiliation(s)
- Aoze Su
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Siyuan Wang
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Akane Sada
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute
| | - Yuko Otani
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Luhan Zhai
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Xin Liu
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Misa Sayama
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute
| | - Tomohiko Ohwada
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| |
Collapse
|
8
|
Wang S, Otani Y, Zhai L, Su A, Nara M, Kawahata M, Yamaguchi K, Sada A, Ohki R, Ohwada T. Overall Shape Constraint of Alternating α/β-Hybrid Peptides Containing Bicyclic β-Proline. Org Lett 2019; 21:7813-7817. [PMID: 31518151 DOI: 10.1021/acs.orglett.9b02799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our NMR, IR/Raman, CD spectroscopic, and X-ray crystallographic studies, as well as accelerated molecular dynamics simulations, showed that alternating hybrid α/β-peptides containing a bicyclic β-proline surrogate form unique extended curved folds, regardless of the peptide length and solvent environment. It is suggested that extended β/PPII structures are preferred in the insulating α-alanine moieties between the rigid bicyclic β-proline structures. These hybrid peptides inhibit p53-MDM2 and p53-MDMX protein-protein interactions.
Collapse
Affiliation(s)
- Siyuan Wang
- Graduate School of Pharmaceutical Sciences , University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan.,Research Foundation Itsuu Laboratory , C1232 Kanagawa Science Park R&D Building, 3-2-1 Sakado, Takatsu-ku , Kawasaki , Kanagawa 213-0012 , Japan
| | - Yuko Otani
- Graduate School of Pharmaceutical Sciences , University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Luhan Zhai
- Graduate School of Pharmaceutical Sciences , University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Aoze Su
- Graduate School of Pharmaceutical Sciences , University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Masayuki Nara
- Department of Chemistry, College of Liberal Arts and Sciences , Tokyo Medical and Dental University , 2-8-30 Kohnodai , Ichikawa , Chiba 272-0827 , Japan
| | - Masatoshi Kawahata
- Department of Pharmaceutical Sciences at Kagawa Campus , Tokushima Bunri University , 1314-1 Shido , Sanuki , Kagawa 769-2193 , Japan
| | - Kentaro Yamaguchi
- Department of Pharmaceutical Sciences at Kagawa Campus , Tokushima Bunri University , 1314-1 Shido , Sanuki , Kagawa 769-2193 , Japan
| | - Akane Sada
- Laboratory of Fundamental Oncology , National Cancer Center Research Institute , Tsukiji 5-1-1 , Chuo-ku , Tokyo 104-0045 , Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology , National Cancer Center Research Institute , Tsukiji 5-1-1 , Chuo-ku , Tokyo 104-0045 , Japan
| | - Tomohiko Ohwada
- Graduate School of Pharmaceutical Sciences , University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| |
Collapse
|
9
|
Zhai L, Otani Y, Ohwada T. Uncovering the Networks of Topological Neighborhoods in β-Strand and Amyloid β-Sheet Structures. Sci Rep 2019; 9:10737. [PMID: 31341215 PMCID: PMC6656768 DOI: 10.1038/s41598-019-47151-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/11/2019] [Indexed: 12/02/2022] Open
Abstract
Although multiple hydrophobic, aromatic π–π, and electrostatic interactions are proposed to be involved in amyloid fibril formation, the precise interactions within amyloid structures remain poorly understood. Here, we carried out detailed quantum theory of atoms-in-molecules (QTAIM) analysis to examine the hydrophobic core of amyloid parallel and antiparallel β-sheet structures, and found the presence of multiple inter-strand and intra-strand topological neighborhoods, represented by networks of through-space bond paths. Similar bond paths from side chain to side chain and from side chain to main chain were found in a single β-strand and in di- and tripeptides. Some of these bond-path networks were enhanced upon β-sheet formation. Overall, our results indicate that the cumulative network of weak interactions, including various types of hydrogen bonding (X-H—Y; X, Y = H, C, O, N, S), as well as non-H-non-H bond paths, is characteristic of amyloid β-sheet structure. The present study postulated that the presence of multiple through-space bond-paths, which are local and directional, can coincide with the attractive proximity effect in forming peptide assemblies. This is consistent with a new view of the van der Waals (vdW) interactions, one of the origins of hydrophobic interaction, which is updating to be a directional intermolecular force.
Collapse
|
10
|
Amide nitrogen pyramidalization changes lactam amide spinning. Nat Commun 2019; 10:461. [PMID: 30692534 PMCID: PMC6349922 DOI: 10.1038/s41467-018-08249-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/19/2018] [Indexed: 11/29/2022] Open
Abstract
Although cis-trans lactam amide rotation is fundamentally important, it has been little studied, except for a report on peptide-based lactams. Here, we find a consistent relationship between the lactam amide cis/trans ratios and the rotation rates between the trans and cis lactam amides upon the lactam chain length of the stapling side-chain of two 7-azabicyclo[2.2.1]heptane bicyclic units, linked through a non-planar amide bond. That is, as the chain length increased, the rotational rate of trans to cis lactam amide was decreased, and consequently the trans ratio was increased. This chain length-dependency of the lactam amide isomerization and our simulation studies support the idea that the present lactam amides can spin through 360 degrees as in open-chain amides, due to the occurrence of nitrogen pyramidalization. The tilting direction of the pyramidal amide nitrogen atom of the bicyclic systems is synchronized with the direction of the semicircle-rotation of the amide. Cis-trans lactam amide rotation is a fundamental process and its understanding might aid molecular design. Here, the authors report the synthesis and study of bicyclic lactams which undergo spin through 360 degrees as in open-chain amides, due to the occurrence of nitrogen pyramidalization.
Collapse
|
11
|
Unexpected Resistance to Base-Catalyzed Hydrolysis of Nitrogen Pyramidal Amides Based on the 7-Azabicyclic[2.2.1]heptane Scaffold. MOLECULES (BASEL, SWITZERLAND) 2018; 23:molecules23092363. [PMID: 30223585 PMCID: PMC6225387 DOI: 10.3390/molecules23092363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 11/27/2022]
Abstract
Non-planar amides are usually transitional structures, that are involved in amide bond rotation and inversion of the nitrogen atom, but some ground-minimum non-planar amides have been reported. Non-planar amides are generally sensitive to water or other nucleophiles, so that the amide bond is readily cleaved. In this article, we examine the reactivity profile of the base-catalyzed hydrolysis of 7-azabicyclo[2.2.1]heptane amides, which show pyramidalization of the amide nitrogen atom, and we compare the kinetics of the base-catalyzed hydrolysis of the benzamides of 7-azabicyclo[2.2.1]heptane and related monocyclic compounds. Unexpectedly, non-planar amides based on the 7-azabicyclo[2.2.1]heptane scaffold were found to be resistant to base-catalyzed hydrolysis. The calculated Gibbs free energies were consistent with this experimental finding. The contribution of thermal corrections (entropy term, –TΔS‡) was large; the entropy term (ΔS‡) took a large negative value, indicating significant order in the transition structure, which includes solvating water molecules.
Collapse
|