1
|
Jaithum K, Tummatorn J, Theppitak C, Chainok K, Thongsornkleeb C, Ruchirawat S. Silver-Catalyzed and Base-Mediated Double Cyclization for the Streamlined Synthesis of Benzo[4,5]imidazo[2,1-b]naphtho[2,3-d]oxazole from ortho-Alkynylarylketones. Chem Asian J 2025. [PMID: 40079900 DOI: 10.1002/asia.202500235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/09/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
We report a novel silver-catalyzed and base-mediated double cyclization strategy for the streamlined synthesis of benzo[4,5]imidazo[2,1-b]naphtho[2,3-d]oxazoles from ortho-alkynylarylketones. The transformation proceeds through an initial ketonization step catalyzed by silver trifluoroacetate (AgTFA), generating a reactive 1,5-diketone intermediate, followed by a sequential double cyclization under basic conditions. This method affords a broad range of benzo[4,5]imidazo[2,1-b]naphtho[2,3-d]oxazoles with good functional group tolerance in moderate-to-good yields. Moreover, this methodology also enhances the synthetic utility of ortho-alkynylarylketones, expanding their applicability in constructing diverse fused heterocycles.
Collapse
Affiliation(s)
- Kanokwan Jaithum
- Program on Chemical Sciences, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Jumreang Tummatorn
- Program on Chemical Sciences, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Chatphorn Theppitak
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani, 12121, Thailand
| | - Charnsak Thongsornkleeb
- Program on Chemical Sciences, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Somsak Ruchirawat
- Program on Chemical Sciences, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| |
Collapse
|
2
|
Provot O. Novel access to α-carbolines with biological applications. Eur J Med Chem 2024; 276:116700. [PMID: 39042992 DOI: 10.1016/j.ejmech.2024.116700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
In recent years, the 9H-pyrido[2,3-b]indole nuclei, also named α-carboline which is found in many organic compounds such as natural products, pharmaceuticals, and materials, have intensively stimulated the research of new synthetic pathways. After a brief report published in 2015 describing novel accesses and biological applications of α-carbolines, this update reports between 2015 and 2023 on the emergence of original syntheses to this heterocyclic nucleus. Examples representing these processes are described and the biological activities of α-carbolines are mentioned when they have been prepared for therapeutic purposes.
Collapse
Affiliation(s)
- Olivier Provot
- Université Paris-Saclay, CNRS, BioCIS, 94400, Orsay, France.
| |
Collapse
|
3
|
Parvatkar PT, Diagne K, Zhao Y, Manetsch R. Indoloquinoline Alkaloids as Antimalarials: Advances, Challenges, and Opportunities. ChemMedChem 2024; 19:e202400254. [PMID: 38840271 DOI: 10.1002/cmdc.202400254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Malaria infections affect almost half of the world's population, with over 200 million cases reported annually. Cryptolepis sanguinolenta, a plant native to West Africa, has long been used across various regions of Africa for malaria treatment. Chemical analysis has revealed that the plant is abundant in indoloquinolines, which have been shown to possess antimalarial properties. Cryptolepine, neocryptolepine, and isocryptolepine are well-studied indoloquinoline alkaloids known for their potent antimalarial activity. However, their structural rigidity and associated cellular toxicity are major drawbacks for preclinical development. This review focuses on the potential of indoloquinoline alkaloids (cryptolepine, neocryptolepine, and isocryptolepine) as scaffolds in drug discovery. The article delves into their antimalarial effects in vitro and in vivo, as well as their proposed mechanisms of action and structure-activity relationship studies. Several studies aim to improve these leads by reducing cytotoxicity while preserving or enhancing antimalarial activity and gaining insights into their mechanisms of action. These investigations highlight the potential of indoloquinolines as a scaffold for developing new antimalarial drugs.
Collapse
Affiliation(s)
- Prakash T Parvatkar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Khaly Diagne
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Yingzhao Zhao
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Roman Manetsch
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
4
|
Jaithum K, Tummatorn J, Thongsornkleeb C, Ruchirawat S. Unveiling Route for the Synthesis of Tröger's Bases Through Azide Rearrangement. Chem Asian J 2024; 19:e202400513. [PMID: 38856228 DOI: 10.1002/asia.202400513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
This study introduces a novel method for producing Tröger's bases by utilizing the rearrangement chemistry of benzyl azide. This method offers a convenient and adaptable pathway for synthesizing these important molecular structures with potential for further advancements. By reacting benzyl azide derivatives with TfOH under the presence of water, this process generates iminium ion, formaldehyde, and aniline intermediates in situ. Notably, this conversion is reversible under acidic conditions, allowing for the regeneration of the iminium ion and ultimately leading to the formation of the desired Tröger's base product. Additionally, this method could decrease the risk of exposure to an excess amount of formaldehyde.
Collapse
Affiliation(s)
- Kanokwan Jaithum
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Jumreang Tummatorn
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Charnsak Thongsornkleeb
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Somsak Ruchirawat
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| |
Collapse
|
5
|
Lu DL, Yao YY, Liang YF, Liang C, Lei L, Ma L, Mo DL. Synthesis of Tetrahydro-5 H-indolo[2,3- b]quinolines through Copper-Catalyzed Cascade Reactions of Aza- o-quinone Methides with Indoles. J Org Chem 2023; 88:690-700. [PMID: 36485009 DOI: 10.1021/acs.joc.2c02140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A variety of tetrahydro-5H-indolo[2,3-b]quinolines were prepared in 40-97% yields through a copper(II)-catalyzed cascade reaction of aza-o-quinone methides generated in situ from 2-(chloromethyl)anilines and indoles. Experimental results showed that the reaction underwent double 1,4-additions and sequential intramolecular cyclization. The present method features broad substrate scope, good functional group tolerance, and easy gram scalable preparation of indolo[2,3-b]quinolines.
Collapse
Affiliation(s)
- Dong-Liu Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Yi-Yun Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Yu-Feng Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.,College of Chemistry and Environment Engineering, Baise University, 21 Zhongshan Second Road, Baise, 533000, China
| | - Cui Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Lu Lei
- College of Chemistry and Environment Engineering, Baise University, 21 Zhongshan Second Road, Baise, 533000, China
| | - Lu Ma
- College of Chemistry and Environment Engineering, Baise University, 21 Zhongshan Second Road, Baise, 533000, China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| |
Collapse
|
6
|
Thongsornkleeb C, Tummatorn J, Ruchirawat S. A Compilation of Synthetic Strategies to Access the Most Utilized Indoloquinoline Motifs. Chem Asian J 2022; 17:e202200040. [PMID: 35132773 DOI: 10.1002/asia.202200040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/07/2022] [Indexed: 11/06/2022]
Abstract
Indoloquinoline alkaloids constitute an important class of aromatic heterocycles consisting of quinoline and indole fused together in various orientations. These compounds, both natural and synthetic, often display various bioactivities which have established them to be one of the interesting medicinal targets. This class of compounds have stimulated much interest among synthetic and medicinal chemists as evidenced by growth in the number of synthetic methods to prepare and study this class of alkaloids. This review compiles the synthetic strategies and methods currently known in the literature for the construction of four important indoloquinoline skeletons.
Collapse
Affiliation(s)
| | - Jumreang Tummatorn
- Chulabhorn Research Institute, Medicinal chemistry, 54 Kamphaeng Phet 6 Talat Bang Khen, 10210, Lak Si, THAILAND
| | | |
Collapse
|
7
|
Laohapaisan P, Lumyong K, Tummatorn J, Thongsornkleeb C, Chatwichien J, Supantanapong N, Ruchirawat S. Ag(I)-Catalyzed/Acid-Mediated Cascade Cyclization of ortho-Alkynylaryl-1,3-dicarbonyls to Access Arylnaphthalenelactones and Furanonaphthol Libraries via Aryl-Disengagement. Chem Asian J 2021; 17:e202101212. [PMID: 34762347 DOI: 10.1002/asia.202101212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/10/2021] [Indexed: 11/09/2022]
Abstract
ortho-Alkynylarylketone derivatives were employed as key precursors for a one-pot synthesis of arylnaphthalenelactone and furanonaphthol libraries. In this work, we discovered a cost-effective protocol to prepare arylnaphthalenelactones in one-pot using inexpensive starting material, malonate ester, which was conveniently functionalized leading to a variety of structures. Moreover, we also found an unexpected oxy-dearylation reaction which could be used to synthesize furanonaphthol analogs. These novel methods could be applied to a broad range of substrates to give the corresponding products in up to 83% yield. Notably, these classes of compounds exhibited more significant inhibition against protein-tyrosine phosphatase 1B (PTP1B) enzyme than a standard compound, ursolic acid.
Collapse
Affiliation(s)
- Pavitra Laohapaisan
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Kanyapat Lumyong
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Jumreang Tummatorn
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand.,Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Charnsak Thongsornkleeb
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand.,Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Jaruwan Chatwichien
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand.,Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Nantamon Supantanapong
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Somsak Ruchirawat
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand.,Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| |
Collapse
|
8
|
Bandyopadhyay D, Thirupathi A, Radhakrishnan D, Panigrahi A, Peruncheralathan S. Triflic acid-mediated N-heteroannulation of β-anilino-β-(methylthio)acrylonitriles: a facile synthesis of 4-amino-2-(methylthio)quinolines. Org Biomol Chem 2021; 19:8544-8553. [PMID: 34550145 DOI: 10.1039/d1ob01151k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various functionalised 4-amino-2-(methylthio)quinolines are synthesised through triflic acid-mediated N-heteroannulation of α-functionalized-β-anilino-β-(methylthio)acrylonitriles for the first time. The N-heteroannulation process is highly chemoselective and has mild reaction conditions. However, this process fails in the absence of the β-methylthio group in the acrylonitriles. In addition, a new double N-heteroannulation process is demonstrated to synthesise indolo[3,2-c]quinolines from non-heterocyclic precursors. Natural product isocryptolepine is synthesised in four steps from an acyclic precursor.
Collapse
Affiliation(s)
- Debashruti Bandyopadhyay
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatani, Khurda-752050, Odisha, India.
| | - Annaram Thirupathi
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatani, Khurda-752050, Odisha, India.
| | - Divya Radhakrishnan
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatani, Khurda-752050, Odisha, India.
| | - Adyasha Panigrahi
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatani, Khurda-752050, Odisha, India.
| | - S Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatani, Khurda-752050, Odisha, India.
| |
Collapse
|
9
|
Reamtong O, Lapmanee S, Tummatorn J, Palavong N, Thongsornkleeb C, Ruchirawat S. Synthesis of Benzoazepine Derivatives via Azide Rearrangement and Evaluation of Their Antianxiety Activities. ACS Med Chem Lett 2021; 12:1449-1458. [PMID: 34531953 DOI: 10.1021/acsmedchemlett.1c00275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022] Open
Abstract
A new synthetic method for the construction of benzoazepine analogues has been developed employing ortho-arylmethylbenzyl azide derivatives as precursors using an azide rearrangement reaction. In this work, 14 benzoazepine compounds were successfully synthesized in moderate to excellent yields. All synthetic benzoazepines were evaluated for their cytotoxicity against normal human kidney cell line (HEK cell). The results showed that compound 18c had the lowest cytotoxicity (IC50 = 65.68 μM) among tested compounds, which was comparable with the antianxiety drug diazepam (IC50 = 87.90 μM). Based on the cytotoxicity results, five benzoazepine analogues (compounds 18c, 18h, 18j, 18n, and 18p) were selected to determine the antianxiety effect on stressed rats using elevated plus maze (EPM) and open field test (OFT) methods. Interestingly, compound 18c showed better anxiolytic activity than diazepam without a sedative effect by showing superior hyperlocomotor activity. Therefore, this discovery could pave the way for drug development to treat patients with anxiety disorder.
Collapse
Affiliation(s)
- Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Sarawut Lapmanee
- Preclinical Department, Faculty of Medicine, Siam University, Bangkok 10160, Thailand
| | - Jumreang Tummatorn
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, 906 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Nitwaree Palavong
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, 906 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Charnsak Thongsornkleeb
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, 906 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, 906 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| |
Collapse
|
10
|
Jaithum K, Tummatorn J, Boekfa B, Thongsornkleeb C, Chainok K, Ruchirawat S. Diastereoselective Synthesis of Spirocyclic Ether from
ortho
‐Carbonylarylacetylenols via Silver‐Catalyzed Cyclization under Acidic Conditions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kanokwan Jaithum
- Center of Excellence on Environmental Health and Toxicology (EHT) Ministry of Education 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
| | - Jumreang Tummatorn
- Center of Excellence on Environmental Health and Toxicology (EHT) Ministry of Education 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
- Laboratory of Medicinal Chemistry Chulabhorn Research Institute 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
| | - Bundet Boekfa
- Department of Chemistry Faculty of Liberal Arts and Science Kasetsart University Kamphaeng Saen Campus Nakhon Pathom 73140 Thailand
| | - Charnsak Thongsornkleeb
- Center of Excellence on Environmental Health and Toxicology (EHT) Ministry of Education 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
- Laboratory of Organic Synthesis Chulabhorn Research Institute 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA) Faculty of Science and Technology Thammasat University Pathum Thani 12121 Thailand
| | - Somsak Ruchirawat
- Center of Excellence on Environmental Health and Toxicology (EHT) Ministry of Education 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
- Laboratory of Medicinal Chemistry Chulabhorn Research Institute 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
| |
Collapse
|
11
|
Ma R, Wang X, Zhang Q, Chen L, Gao J, Feng J, Wei D, Du D. Atroposelective Synthesis of Axially Chiral 4-Aryl α-Carbolines via N-Heterocyclic Carbene Catalysis. Org Lett 2021; 23:4267-4272. [PMID: 33973794 DOI: 10.1021/acs.orglett.1c01221] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first catalytic asymmetric construction of axially chiral 4-aryl α-carboline skeletons has been accomplished through an N-heterocyclic carbene (NHC)-catalyzed atroposelective formal [3 + 3] annulation of 4-nitrophenyl 3-arylpropiolates with 2-sulfonamidoindolines. The synthetic utility of the title compounds has been demonstrated by the diverse late-stage structural modifications. Density functional theory calculations were also conducted to illuminate the key factors for controlling the origin of the enantioselectivity. This strategy not only provides an efficient pathway to access axially chiral α-carboline atropisomers but also offers a novel catalytic enantioselective mode for the construction of axially chiral heterobiaryls by using NHC-bound alkynyl acylazoliums.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiaoxue Wang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qiaoyu Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| | - Lei Chen
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jian Gao
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jie Feng
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| | - Ding Du
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
12
|
Wang QB, Tang S, Wang YJ, Yuan Y, Chen T, Jia AQ. PhI(OAc) 2-mediated intramolecular oxidative C-N coupling and detosylative aromatization: an access to indolo[2,3- b]quinolines. RSC Adv 2021; 11:17206-17211. [PMID: 35479722 PMCID: PMC9032537 DOI: 10.1039/d1ra01894a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
A PIDA mediated intramolecular oxidative C–N coupling and subsequent detosylative aromatization to afford indolo[2,3-b]quinoline derivatives has been developed. This tandem reaction provided an efficient method for the synthesis of valuable indolo[2,3-b]quinoline derivatives. Under mild conditions, PIDA mediated oxidant C–N coupling to afford indolo[2,3-b]quinoline derivatives has been developed with a decent substrate scope.![]()
Collapse
Affiliation(s)
- Quan-Bing Wang
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University Haikou 570228 China
| | - Shi Tang
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University Haikou 570228 China
| | - Ying-Jie Wang
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University Haikou 570228 China
| | - Yue Yuan
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University Haikou 570228 China
| | - Tieqiao Chen
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University Haikou 570228 China
| | - Ai-Qun Jia
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University Haikou 570228 China
| |
Collapse
|
13
|
Uyanik M, Tanaka H, Ishihara K. I
+
/TBHP Catalysis For Tandem Oxidative Cyclization To Indolo[2,3‐
b
]quinolines. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Muhammet Uyanik
- Graduate School of Engineering Nagoya University Chikusa Nagoya 464-8603 Japan
| | - Hiroki Tanaka
- Graduate School of Engineering Nagoya University Chikusa Nagoya 464-8603 Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering Nagoya University Chikusa Nagoya 464-8603 Japan
| |
Collapse
|
14
|
Verma K, Tailor YK, Khandelwal S, Agarwal M, Rushell E, Pathak S, Kumari Y, Awasthi K, Kumar M. Synthesis and characterization of terbium doped TiO
2
nanoparticles and their use as recyclable and reusable heterogeneous catalyst for efficient and environmentally sustainable synthesis of spiroannulated indolo[3,2‐
c
]quinolines‐ mimetic scaffolds of isocryptolepine. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kanchan Verma
- Department of Chemistry University of Rajasthan Jaipur India
| | | | | | - Monu Agarwal
- Department of Chemistry University of Rajasthan Jaipur India
| | - Esha Rushell
- Department of Chemistry University of Rajasthan Jaipur India
| | - Sakshi Pathak
- Department of Chemistry University of Rajasthan Jaipur India
| | - Yogita Kumari
- Soft Materials Lab, Department of Physics Malaviya National Institute of Technology Jaipur India
| | - Kamlendra Awasthi
- Soft Materials Lab, Department of Physics Malaviya National Institute of Technology Jaipur India
| | - Mahendra Kumar
- Department of Chemistry University of Rajasthan Jaipur India
| |
Collapse
|
15
|
Akkachairin B, Rodphon W, Reamtong O, Mungthin M, Tummatorn J, Thongsornkleeb C, Ruchirawat S. Synthesis of neocryptolepines and carbocycle-fused quinolines and evaluation of their anticancer and antiplasmodial activities. Bioorg Chem 2020; 98:103732. [DOI: 10.1016/j.bioorg.2020.103732] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/20/2020] [Accepted: 03/06/2020] [Indexed: 01/07/2023]
|
16
|
Cheng B, Bao B, Xu W, Li Y, Li H, Zhang X, Li Y, Wang T, Zhai H. Synthesis of fully substituted pyrazoles from pyridinium 1,4-zwitterionic thiolates and hydrazonoyl chlorides via a [[3 + 3] - 1] pathway. Org Biomol Chem 2020; 18:2949-2955. [PMID: 32242607 DOI: 10.1039/d0ob00224k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and practical protocol for the synthesis of fully substituted pyrazoles from pyridinium 1,4-zwitterionic thiolates and hydrazonoyl chlorides in excellent yields under mild conditions is described. The transformation proceeds via an unusual [[3 + 3] - 1] pathway, which involves a formal [3 + 3] cascade cyclization followed by a spontaneous ring-contraction/sulfur extrusion reaction from 4H-1,3,4-thiadiazine intermediates.
Collapse
Affiliation(s)
- Bin Cheng
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China. and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Bian Bao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wei Xu
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China. and Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, College of Pharmacy, Hubei University of Medicine, Shiyan, 442000, China
| | - Yuntong Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hui Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xinping Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yun Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Taimin Wang
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Hongbin Zhai
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China. and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China and State Key Laboratory of Chemical Oncogenomics, Shenzhen Engineering Laboratory of Nano Drug Slow-Release, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
17
|
Laohapaisan P, Chuangsoongnern P, Tummatorn J, Thongsornkleeb C, Ruchirawat S. Divergent Synthesis of 3-Hydroxyfluorene and 4-Azafluorene Derivatives from ortho-Alkynylarylketones. J Org Chem 2019; 84:14451-14460. [DOI: 10.1021/acs.joc.9b01825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Pavitra Laohapaisan
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Pennapa Chuangsoongnern
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Jumreang Tummatorn
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Charnsak Thongsornkleeb
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| |
Collapse
|
18
|
Zou LH, Zhu H, Zhu S, Shi K, Yan C, Li PG. Copper-Catalyzed Ring-Opening/Reconstruction of Anthranils with Oxo-Compounds: Synthesis of Quinoline Derivatives. J Org Chem 2019; 84:12301-12313. [DOI: 10.1021/acs.joc.9b01577] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Liang-Hua Zou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, P. R. China
| | - Hao Zhu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, P. R. China
| | - Shuai Zhu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, P. R. China
| | - Kai Shi
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, P. R. China
| | - Cheng Yan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, P. R. China
| | - Ping-Gui Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, P. R. China
| |
Collapse
|
19
|
Nimnual P, Tummatorn J, Boekfa B, Thongsornkleeb C, Ruchirawat S, Piyachat P, Punjajom K. Construction of 5-Aminotetrazoles via in Situ Generation of Carbodiimidium Ions from Ketones Promoted by TMSN 3/TfOH. J Org Chem 2019; 84:5603-5613. [PMID: 30945854 DOI: 10.1021/acs.joc.9b00555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A novel synthetic approach for the synthesis of 5-aminotetrazoles has been developed by employing simple ketones as substrates. This methodology involved the N2-extrusion/aryl migration of azido complexes as the key step for the in situ generation of carbodiimidium ion, which could further react with hydrazoic acid and cyclize intramolecularly to provide 5-aminotetrazoles in good to excellent yields. In addition, the regioselectivity of the reaction was studied and rationalized by density functional theory calculations.
Collapse
Affiliation(s)
- Phongprapan Nimnual
- Program on Chemical Biology , Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education , 54 Kamphaeng Phet 6 , Laksi , Bangkok 10210 , Thailand
| | - Jumreang Tummatorn
- Program on Chemical Biology , Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education , 54 Kamphaeng Phet 6 , Laksi , Bangkok 10210 , Thailand.,Laboratory of Medicinal Chemistry , Chulabhorn Research Institute , 54 Kamphaeng Phet 6 , Laksi , Bangkok 10210 , Thailand
| | - Bundet Boekfa
- Department of Chemistry, Faculty of Liberal Arts and Science , Kasetsart University , Kamphaeng Saen Campus, Bangkok , Nakhon Pathom 73140 , Thailand
| | - Charnsak Thongsornkleeb
- Program on Chemical Biology , Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education , 54 Kamphaeng Phet 6 , Laksi , Bangkok 10210 , Thailand.,Laboratory of Medicinal Chemistry , Chulabhorn Research Institute , 54 Kamphaeng Phet 6 , Laksi , Bangkok 10210 , Thailand
| | - Somsak Ruchirawat
- Program on Chemical Biology , Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education , 54 Kamphaeng Phet 6 , Laksi , Bangkok 10210 , Thailand.,Laboratory of Medicinal Chemistry , Chulabhorn Research Institute , 54 Kamphaeng Phet 6 , Laksi , Bangkok 10210 , Thailand
| | - Pawida Piyachat
- Program on Chemical Biology , Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education , 54 Kamphaeng Phet 6 , Laksi , Bangkok 10210 , Thailand
| | - Kunlayanee Punjajom
- Program on Chemical Biology , Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education , 54 Kamphaeng Phet 6 , Laksi , Bangkok 10210 , Thailand
| |
Collapse
|
20
|
Yeh LH, Wang HK, Pallikonda G, Ciou YL, Hsieh JC. Palladium-Catalyzed Dual Annulation: A Method for the Synthesis of Norneocryptolepine. Org Lett 2019; 21:1730-1734. [DOI: 10.1021/acs.orglett.9b00287] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Li-Hsuan Yeh
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Hung-Kai Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | | | - Yu-Lun Ciou
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Jen-Chieh Hsieh
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| |
Collapse
|