1
|
Gao J, Fu X, Yang K, Liu Z. Recent Advances in Visible Light-Induced C-H Functionalization of Imidazo[1,2-a]pyridines. Molecules 2025; 30:607. [PMID: 39942710 PMCID: PMC11820825 DOI: 10.3390/molecules30030607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
The imidazo[1,2-a]pyridine skeleton is widely present in many natural products and pharmaceutical agents. Due to its impressive and significant biological activities, such as analgesic, anti-tumor, antiosteoporosis, and anxiolytic properties, the derivatization of imidazo[1,2-a]pyridine skeleton has attracted widespread attention from chemists. In recent years, significant progress has been made in the derivatization of imidazo[1,2-a]pyridines through direct C-H functionalization, especially through visible light induction. This review highlights recent advances in visible light-induced C-H functionalization of imidazo[1,2-a]pyridines during the past ten years, and some reaction mechanisms are also discussed.
Collapse
Affiliation(s)
| | | | | | - Zhaowen Liu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (J.G.); (X.F.); (K.Y.)
| |
Collapse
|
2
|
Zhang YD, Guan ZP, Dong ZB. One Pot Synthesis of C3-Sulfurized Imidazolo [1,2- a] Pyridines. J Org Chem 2024; 89:14098-14107. [PMID: 39290096 DOI: 10.1021/acs.joc.4c01524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
A facile and efficient annulation strategy was developed from easily accessible a-bromoketones, aminopyridines and benzazol, which afforded a series of imidazole [1,2-a]pyridine sulfides in moderate to good yields. The reaction involves the formation of C-N/C-S bond with the advantages of easy operation and wide substrates scope.
Collapse
Affiliation(s)
- Ya-Dan Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhi-Peng Guan
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Hubei Three Gorges Laboratory, Yichang 443000, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Hubei Three Gorges Laboratory, Yichang 443000, China
| |
Collapse
|
3
|
Ghosh K, Ghosh NN, Choudhury P, Bhattacharjee S, Saha R, Deb M, Biswas K. A benzimidazole-based Cu(II) complex catalyzed site-selective C-H sulfenylation of imidazo-[1,2- a]pyridines using CS 2 as a sulfur source. Org Biomol Chem 2024; 22:7791-7800. [PMID: 39240159 DOI: 10.1039/d4ob00868e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
A new benzimidazole-based Cu(II) complex catalyzed site-selective sulfenylation of imidazo[1,2-a]pyridines with benzyl/alkyl/allyl bromides and CS2 at 100 °C in DMF : H2O is reported. The present methodology has been developed for the synthesis of 3-sulfenyl imidazo[1,2-a]pyridines in good yields with a broad substrate scope. In this protocol, CS2, commonly known as a non-polar small molecule bioregulator (SMB), is converted to valuable sulfenylated imidazo[1,2-a]pyridine derivatives. In addition, theoretical investigations along with experimental evidence unfold the insights into the probable mechanistic pathway of site-selective sulfenylation from S,S-dibenzyltrithiocarbonate, which is particularly formed as an intermediate during the reaction.
Collapse
Affiliation(s)
- Kingkar Ghosh
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| | | | - Prasun Choudhury
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| | | | - Rajat Saha
- Department of Chemistry, Kazi Nazrul University, Asansol, 713340, India
| | - Mayukh Deb
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| | - Kinkar Biswas
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| |
Collapse
|
4
|
Miyake H, Ishige N, Okai H, Iida H. Aerobic oxidative C-C bond formation through C-H bond activation catalysed by flavin and iodine. Org Biomol Chem 2024; 22:7736-7742. [PMID: 39229653 DOI: 10.1039/d4ob01317d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
We report a metal/light-free aerobic oxidative C-C bond formation using sp3 C-H bond activation of tetrahydroisoquinolines catalyzed by flavin and iodine. The dual catalytic system enabled the oxidative Mannich and aza-Henry reactions by the cross-dehydrogenative coupling between two sp3 C-H bonds. Furthermore, the flavin-iodine-coupled catalysis was applied to the synthesis of pyrrolo[2,1-a]isoquinolines through the sequential oxidative 1,3-dipolar cycloaddition and dehydrogenative aromatization. The biomimetic flavin catalysis efficiently activates molecular oxygen; thus the non-metal dual catalytic system enables green oxidative transformation using molecular oxygen as an environmentally friendly terminal oxidant which generates benign water.
Collapse
Affiliation(s)
- Hazuki Miyake
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| | - Nico Ishige
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| | - Hayaki Okai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
5
|
Yang K, Chen CB, Liu ZW, Li ZL, Zeng Y, Wang ZY. C 3-Alkylation of Imidazo[1,2-a]pyridines via Three-Component Aza-Friedel-Crafts Reaction Catalyzed by Y(OTf) 3. Molecules 2024; 29:3463. [PMID: 39124868 PMCID: PMC11313794 DOI: 10.3390/molecules29153463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
As an important class of nitrogen-containing fused heterocyclic compounds, imidazo[1,2-a]pyridines often exhibit significant biological activities, such as analgesic, anticancer, antiosteoporosis, anxiolytic, etc. Using Y(OTf)3 as a Lewis acid catalyst, a simple and efficient method has been developed for the synthesis of C3-alkylated imidazo[1,2-a]pyridines through the three-component aza-Friedel-Crafts reaction of imidazo[1,2-a]pyridines, aldehydes, and amines in the normal air atmosphere without the protection of inert gas and special requirements for anhydrous and anaerobic conditions. A series of imidazo[1,2-a]pyridine derivatives were obtained with moderate to good yields, and their structures were confirmed by 1H NMR, 13C NMR, and HRMS. Furthermore, this conversion has the advantages of simple operation, excellent functional group tolerance, high atomic economy, broad substrate scope, and can achieve gram-level reactions. Notably, this methodology may be conveniently applied to the further design and rapid synthesis of potential biologically active imidazo[1,2-a]pyridines with multifunctional groups.
Collapse
Affiliation(s)
- Kai Yang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (C.-B.C.); (Z.-W.L.); (Z.-L.L.)
| | - Cai-Bo Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (C.-B.C.); (Z.-W.L.); (Z.-L.L.)
| | - Zhao-Wen Liu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (C.-B.C.); (Z.-W.L.); (Z.-L.L.)
| | - Zhen-Lin Li
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (C.-B.C.); (Z.-W.L.); (Z.-L.L.)
| | - Yu Zeng
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China;
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China;
| |
Collapse
|
6
|
Tali JA, Kumar G, Sharma BK, Rasool Y, Sharma Y, Shankar R. Synthesis and site selective C-H functionalization of imidazo-[1,2- a]pyridines. Org Biomol Chem 2023; 21:7267-7289. [PMID: 37655687 DOI: 10.1039/d3ob00849e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Imidazo[1,2-a]pyridine has attracted much interest in drug development because of its potent medicinal properties, therefore the discovery of novel methods for its synthesis and functionalization continues to be an exciting area of research. Although transition metal catalysis has fuelled the most significant developments, extremely beneficial metal-free approaches have also been identified. Even though pertinent reviews focused on imidazo[1,2-a]pyridine synthesis, properties (physicochemical and medicinal), and functionalization at the C3 position have been published, none of these reviews has focused on the outcomes obtained in the field of global ring functionalization. We wish here to describe a brief synthesis and an overview of all the functionalization reactions at each carbon atom, viz, C2, C3, C5, C6, C7 and C8 of this scaffold, divided into sections based on site-selectivity and the type of functionalization methods used.
Collapse
Affiliation(s)
- Javeed Ahmad Tali
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Gulshan Kumar
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Bhupesh Kumar Sharma
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Younis Rasool
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Yashika Sharma
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Ravi Shankar
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
7
|
Takeda A, Oka M, Iida H. Atom-Economical Syntheses of Dihydropyrroles Using Flavin-Iodine-Catalyzed Aerobic Multistep and Multicomponent Reactions. J Org Chem 2023. [PMID: 37183405 DOI: 10.1021/acs.joc.3c00444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Herein, we report facile, atom-economical syntheses of multisubstituted 2,3-dihydropyrroles using flavin-iodine-catalyzed aerobic oxidative multistep transformations of chalcones with β-enamine ketones or 1,3-dicarbonyl compounds and amines. Exploiting coupled flavin-iodine catalysis, the multistep reaction, including C-C and C-N bond formation, is promoted only by the consumption of O2 (1 atm), thus allowing aerobic oxidative synthesis that generates green H2O as the only waste.
Collapse
Affiliation(s)
- Aki Takeda
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Marina Oka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| |
Collapse
|
8
|
Sun S, Ye H, Liu H, Guo Y, Gao Z, Pan L, Li J, Bi X. Efficient Synthesis of 3-Mercaptoindoles via HI-Promoted Sulfenylation of Indoles with Sodium Sulfinates. ChemistryOpen 2023; 12:e202300002. [PMID: 36971064 PMCID: PMC10041381 DOI: 10.1002/open.202300002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/05/2023] [Indexed: 03/29/2023] Open
Abstract
A new direct sulfenylation method of indoles by sodium sulfinates and hydroiodic acid was developed giving variety of 3-sulfenylindoles in high yields under mild conditions without using any catalysts or other additives. In situ-generated RS-I species are supposed to be mainly responsible for the key electrophilic alkyl- or aryl-thiolation process.
Collapse
Affiliation(s)
- Shengnan Sun
- State Key Laboratory of NBC Protection for Civilian102205BeijingChina
| | - Hexia Ye
- State Key Laboratory of NBC Protection for Civilian102205BeijingChina
| | - Haibo Liu
- State Key Laboratory of NBC Protection for Civilian102205BeijingChina
| | - Yongbiao Guo
- State Key Laboratory of NBC Protection for Civilian102205BeijingChina
| | - Zhenhua Gao
- State Key Laboratory of NBC Protection for Civilian102205BeijingChina
| | - Li Pan
- State Key Laboratory of NBC Protection for Civilian102205BeijingChina
| | - Junchen Li
- State Key Laboratory of NBC Protection for Civilian102205BeijingChina
| | - Xiaojing Bi
- State Key Laboratory of NBC Protection for Civilian102205BeijingChina
| |
Collapse
|
9
|
Guo T, Bi L, Zhang M, Zhu CJ, Yuan LB, Zhao YH. Access to Sulfur-Containing Bisheterocycles through Base-Promoted Consecutive Tandem Cyclization/Sulfenylation with Elemental Sulfur. J Org Chem 2022; 87:16907-16912. [PMID: 36417664 DOI: 10.1021/acs.joc.2c02248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A convenient and efficient tandem cyclization/sulfenylation of o-alkynyl-phenols/-anilines/enaminones for the synthesis of diverse sulfur-containing bisheterocycles has been developed using stable, odorless, and easy-to-handle elemental S8 as a building block under green chemistry conditions. Notably, a one-step simple base-mediated organic transformation affords a benzofuran (indole or chromone) ring and two C-S bonds. Attractive features of this methodology include the absence of a metal catalyst, mild conditions, good functional group tolerance, and valuable product structures.
Collapse
Affiliation(s)
- Tao Guo
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Lei Bi
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Miao Zhang
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Cong-Jun Zhu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Li-Bo Yuan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Yun-Hui Zhao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| |
Collapse
|
10
|
Mahajan S, Sawant SD. Iodine/TBHP-Mediated One-Pot Multicomponent Protocol for Tandem C-N and C-S Bond Formation To Access Sulfenylimidazo[1,5- a]pyridines via C-H Functionalization. J Org Chem 2022; 87:11387-11398. [PMID: 35960193 DOI: 10.1021/acs.joc.2c00890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A mild and simple protocol has been established for the formation of sulfenylated imidazo[1,5-a]pyridines. This is a metal-free iodine/TBHP-mediated one-pot multicomponent reaction, which follows C-H functionalization of the imidazo[1,5-a]pyridine skeleton formed during the reaction and its subsequent sulfenylation in the same step to offer sulfenylated imidazo[1,5-a]pyridines in good to high yields. The extension and applications of this method have also been demonstrated.
Collapse
Affiliation(s)
- Shivangani Mahajan
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Sanghapal D Sawant
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| |
Collapse
|
11
|
Takeda A, Okai H, Watabe K, Iida H. Metal-Free Atom-Economical Synthesis of Tetra-Substituted Imidazoles via Flavin-Iodine Catalyzed Aerobic Cross-Dehydrogenative Coupling of Amidines and Chalcones. J Org Chem 2022; 87:10372-10376. [PMID: 35839306 DOI: 10.1021/acs.joc.2c00596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein, we demonstrated the oxidative cross-dehydrogenative coupling between amidines and chalcones catalyzed by flavin and iodine. The riboflavin-iodine catalytic system played multiple roles in substrate- and O2-activation, enabling the facile and atom-economical synthesis of tetra-substituted imidazoles in good yields (60-87%). This metal-free reaction consumed only 1 equiv of molecular oxygen and generated 2 equiv of environmentally benign H2O as the only byproduct.
Collapse
Affiliation(s)
- Aki Takeda
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Hayaki Okai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Kyoji Watabe
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| |
Collapse
|
12
|
Wang LS, Zhou Y, Lei SG, Yu XX, Huang C, Wu YD, Wu AX. Iodine-Mediated Multicomponent Cascade Cyclization and Sulfenylation/Selenation: Synthesis of Imidazo[2,1- a]isoquinoline Derivatives. Org Lett 2022; 24:4449-4453. [PMID: 35696662 DOI: 10.1021/acs.orglett.2c01681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel multicomponent cascade cyclization and sulfenylation/selenation using aryl methyl ketones, isoquinolin-1-amine, and sodium arylsulfinates/1,2-diphenyldiselane to synthesize imidazo[2,1-a]isoquinoline derivatives in one-pot via the construction of two C-N bonds and one C-S/C-Se bond has been reported. This multicomponent reaction realizes simultaneous C(sp3)-H amination and sulfenylation/selenation, avoiding complicated prior substrate preparation. This process has simple operating conditions and good substrate compatibility.
Collapse
Affiliation(s)
- Li-Sheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Shuang-Gui Lei
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiao-Xiao Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chun Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
13
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
14
|
Recent advances in transition-metal-free C–H functionalization of imidazo[1,2-a]pyridines. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
15
|
Qiao H, Yang L, Sun W, Chen Y, Wang J, Wang Y, Dong H. Metal-Free C3-H Hydrazination of Imidazo[1,2-a]pyridine with Azodiformates in Water at Room Temperature. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Iida H. Recent Development of Aerobic Oxidative Transformations by Flavin Catalysis. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University
| |
Collapse
|
17
|
Qiao H, Yang L, Chen Y, Wang J, Sun W, Dong H, Wang Y. An Efficient Three-Component Tandem Approach for the Synthesis of Imidazoheterocycle-Hydrazine Derivatives under Mild Conditions. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Shi T, Liu Y, Wang S, Lv Q, Yu B. Recyclable Carbon Nitride
Nanosheet‐Photocatalyzed
Aminomethylation of Imidazo[1,2‐
a
]pyridines in Green Solvent. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tao Shi
- School of Biology, College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
- Institute of Chemistry Henan Academy of Sciences Zhengzhou Henan 450002 China
| | - Yu‐Ting Liu
- School of Biology, College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Shan‐Shan Wang
- Beijing Institute of Technology Analysis & Testing Center, Beijing Institute of Technology Beijing 100081 China
| | - Qi‐Yan Lv
- School of Biology, College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Bing Yu
- School of Biology, College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| |
Collapse
|
19
|
Yan Q, Cui W, Li J, Xu G, Song X, Lv J, Yang D. C–H benzylation of quinoxalin-2(1 H)-ones via visible-light riboflavin photocatalysis. Org Chem Front 2022. [DOI: 10.1039/d1qo01910d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An efficient visible light promoted riboflavin-catalyzed direct benzylation of substituted quinoxalin-2(1H)-ones for the synthesis of various C3-benzylated quinoxalin-2(1H)-one derivatives has been developed under mild conditions.
Collapse
Affiliation(s)
- Qiuli Yan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Wenwen Cui
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Junxin Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Guiyun Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiuyan Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Daoshan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
20
|
Mukherjee S, Pramanik A. Mild and Expeditious Synthesis of Sulfenyl Enaminones of l-α-Amino Esters and Aryl/Alkyl Amines through NCS-Mediated Sulfenylation. ACS OMEGA 2021; 6:33805-33821. [PMID: 34926928 PMCID: PMC8675011 DOI: 10.1021/acsomega.1c05058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Sulfenylation or selenylation of enaminones of l-α-amino esters requires mild reaction conditions due to the presence of a racemization-prone chiral center and reactive side chains. An N-chlorosuccinimide (NCS)-mediated methodology has been developed for rapid sulfenylation of enaminones of l-α-amino esters and aryl/alkyl amines at room temperature in open air under metal-free conditions. Enaminones of l-α-amino esters bearing aliphatic, aromatic, and heterocyclic side chains react efficiently with diverse aryl/alkyl/heteroaryl thiols (R1SH) in the presence of NCS to afford a library of biologically important sulfenyl enaminones in good-to-excellent yields (71-90%). Under similar reaction conditions, the enaminones also react with benzeneselenol to produce selenyl enaminones in good yield (73-83%). The NCS-mediated pathway generates sulfenyl chloride (R1SCl) as an intermediate which leads to rapid sulfenylation of enaminones through cross-dehydrogenative coupling (CDC) under mild reaction conditions.
Collapse
Affiliation(s)
- Sayan Mukherjee
- Department of Chemistry, University
of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Animesh Pramanik
- Department of Chemistry, University
of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
21
|
Saroha M, Sindhu J, Kumar S, Bhasin KK, Khurana JM, Varma RS, Tomar D. Transition Metal‐Free Sulfenylation of C−H Bonds for C−S Bond Formation in Recent Years: Mechanistic Approach and Promising Future. ChemistrySelect 2021. [DOI: 10.1002/slct.202102042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mohit Saroha
- Department of Chemistry University of Delhi Delhi 110007 India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU Hisar Haryana 125004 India
| | - Sudhir Kumar
- Department of Chemistry, COBS&H, CCSHAU Hisar Haryana 125004 India
| | - Kuldip K. Bhasin
- Department of Chemistry & Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | | | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials Palacký University in Olomouc Šlechtitelů 27 783 71 Olomouc Czech Republic
| | - Deepak Tomar
- Department of Chemistry R. K. P. G. College Shamli Uttar Pradesh 247776 India
| |
Collapse
|
22
|
Chaubey NR, Kapdi AR. HFIP promoted thio(hetero)arylation of imidazoheterocycles under metal- and base-free conditions. Chem Commun (Camb) 2021; 57:8202-8205. [PMID: 34313277 DOI: 10.1039/d1cc03089b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A new reaction methodology has been developed for HFIP promoted Thio(hetero)arylation of imidazoheterocycles under metal and base-free conditions. To the best of our knowledge, this is the first report that describes linking of imidazopyridines with electron deficient heteroarenes through a sulphur atom and also for the synthesis of most of these compounds. The reaction conditions are well tolerated by almost all kinds of 2-chloroheteroarenes and a wide range of imidazoheterocycles. The synthesized compounds can show significant biological properties.
Collapse
Affiliation(s)
- Narendra R Chaubey
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai-400019, Maharashtra, India.
| | | |
Collapse
|
23
|
Rehpenn A, Walter A, Storch G. Molecular Editing of Flavins for Catalysis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1458-2419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe diverse activity of flavoenzymes in organic transformations has fascinated researchers for a long time. However, when applied outside an enzyme environment, the isolated flavin cofactor only shows largely reduced activity. This highlights the importance of embedding the reactive isoalloxazine core of flavins in defined surroundings. The latter include crucial non-covalent interactions with amino acid side chains or backbone as well as controlled access to reactants such as molecular oxygen. Nevertheless, molecular flavins are increasingly applied in the organic laboratory as valuable organocatalysts. Chemical modification of the parent isoalloxazine structure is of particular interest in this context in order to achieve reactivity and selectivity in transformations, which are so far only known with flavoenzymes or even unprecedented. This review aims to give a systematic overview of the reported designed flavin catalysts and highlights the impact of each structural alteration. It is intended to serve as a source of information when comparing the performance of known catalysts, but also when designing new flavins. Over the last few decades, molecular flavin catalysis has emerged from proof-of-concept reactions to increasingly sophisticated transformations. This stimulates anticipating new flavin catalyst designs for solving contemporary challenges in organic synthesis.1 Introduction2 N1-Modification3 N3-Modification4 N5-Modification5 C6–C9-Modification6 N10-Modification7 Conclusion
Collapse
|
24
|
Han DY, Liu XP, Li RP, Xu DZ. Aerobic Cross-Dehydrogenative Coupling Reactions for Selective Mono- and Dithiolation of Phenols. J Org Chem 2021; 86:10166-10176. [PMID: 34252273 DOI: 10.1021/acs.joc.1c00898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly efficient strategy for the direct thiolation of phenols under transition metal-free and solvent-free conditions has been developed. These reactions are operationally simple with employing air (molecular oxygen) as an ideal oxidant and can selectively provide mono- and dithiolation products in good to excellent yields under basic conditions. The reaction tolerates a broad range of aryl thiols and arenes and is especially applicable for large-scale synthesis.
Collapse
Affiliation(s)
- Dong-Yang Han
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao-Peng Liu
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ruo-Pu Li
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Da-Zhen Xu
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
25
|
Batra A, Singh P, Singh KN. Latest Advancements in Transition‐Metal‐Free Carbon‐Heteroatom Bond Formation Reactions
via
Cross‐ Dehydrogenative Coupling. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aanchal Batra
- PG Department of Chemistry Mehr Chand Mahajan DAV College for Women, Sec 36/A Chandigarh 160036 India
| | | | - Kamal Nain Singh
- Department of Chemistry and Centre of Advanced studies in Chemistry Panjab University Chandigarh 160014 India
| |
Collapse
|
26
|
Liu J, Han S, Hu Y, Pao CW. Fabrication and characterization of a novel PMO containing riboflavin-5'-phosphate sodium salt for sensitive detection of pesticide ferbam. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Gan Z, Zhu X, Yan Q, Song X, Yang D. Oxidative dual C–H sulfenylation: A strategy for the synthesis of bis(imidazo[1,2-a]pyridin-3-yl)sulfanes under metal-free conditions using sulfur powder. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Tanimoto K, Okai H, Oka M, Ohkado R, Iida H. Aerobic Oxidative C-H Azolation of Indoles and One-Pot Synthesis of Azolyl Thioindoles by Flavin-Iodine-Coupled Organocatalysis. Org Lett 2021; 23:2084-2088. [PMID: 33656903 DOI: 10.1021/acs.orglett.1c00241] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aerobic oxidative cross-coupling of indoles with azoles driven by flavin-iodine-coupled organocatalysis has been developed for the green synthesis of 2-(azol-1-yl)indoles. The coupled organocatalytic system enabled the one-pot three-component synthesis of 2-azolyl-3-thioindoles from indoles, azoles, and thiols in an atom-economical manner by utilizing molecular oxygen as the only sacrificial reagent.
Collapse
Affiliation(s)
- Kazumasa Tanimoto
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Hayaki Okai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Marina Oka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Ryoma Ohkado
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| |
Collapse
|
29
|
Yogananda Chary D, Nagarjuna Reddy K, Sridhar B, Subba Reddy B. Ru(II) catalyzed dehydrogenative annulation of 2-arylimidazo[1,2-a]pyridines with maleimides. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Mu Y, Yang M, Li F, Iqbal Z, Jiang R, Hou J, Guo X, Yang Z, Tang D. Iodine-catalyzed sulfuration of isoquinolin-1(2 H)-ones applying ethyl sulfinates. NEW J CHEM 2021. [DOI: 10.1039/d1nj00390a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Sulfuration of isoquinolin-1(2H)-ones at the C-4 position by employing ethyl sulfonates.
Collapse
Affiliation(s)
- Yangxiu Mu
- Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science
- Yinchuan 750002
- P. R. China
| | - Minghua Yang
- Department of Chemistry
- Lishui University
- Lishui
- P. R. China
| | - Fengxia Li
- Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science
- Yinchuan 750002
- P. R. China
| | - Zafar Iqbal
- Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science
- Yinchuan 750002
- P. R. China
| | - Rui Jiang
- Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science
- Yinchuan 750002
- P. R. China
| | - Jing Hou
- Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science
- Yinchuan 750002
- P. R. China
| | - Xin Guo
- Department of Pharmaceutical Engineering
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan 750002
- P. R. China
| | - Zhixiang Yang
- Department of Chemistry
- Lishui University
- Lishui
- P. R. China
| | - Dong Tang
- Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science
- Yinchuan 750002
- P. R. China
- Department of Chemistry
- Lishui University
| |
Collapse
|
31
|
Kumar R, Rawat D, Semwal R, Badhani G, Adimurthy S. Hypervalent iodine mediated synthesis of imidazo[1,2- a]pyridine ethers: consecutive methylene linkage and insertion of ethylene glycol. NEW J CHEM 2021. [DOI: 10.1039/d1nj00657f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hypervalent iodine mediated selective synthesis of imidazo[1,2-a]pyridine ethers using ethylene glycol as a methoxy ethanol source as well as solvent under metal-free conditions is described.
Collapse
Affiliation(s)
- Rahul Kumar
- Academy of Scientific & Innovative Research Ghaziabad
- CSIR–Central Salt & Marine Chemicals Research Institute
- G. B. Marg
- Bhavnagar-364002
- India
| | - Deepa Rawat
- Academy of Scientific & Innovative Research Ghaziabad
- CSIR–Central Salt & Marine Chemicals Research Institute
- G. B. Marg
- Bhavnagar-364002
- India
| | - Rashmi Semwal
- Academy of Scientific & Innovative Research Ghaziabad
- CSIR–Central Salt & Marine Chemicals Research Institute
- G. B. Marg
- Bhavnagar-364002
- India
| | - Gaurav Badhani
- Academy of Scientific & Innovative Research Ghaziabad
- CSIR–Central Salt & Marine Chemicals Research Institute
- G. B. Marg
- Bhavnagar-364002
- India
| | - Subbarayappa Adimurthy
- Academy of Scientific & Innovative Research Ghaziabad
- CSIR–Central Salt & Marine Chemicals Research Institute
- G. B. Marg
- Bhavnagar-364002
- India
| |
Collapse
|
32
|
Saroj, Rangan K, Kumar A. A Facile Synthesis of 3‐(Arylthio)imidazo[1,2‐
a
]pyridin‐2(3H)‐ones from 2‐Aminopyridinium Bromides and Sodium Arenesulfinates. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Saroj
- Department of Chemistry Birla Institute of Technology and Science Pilani Pilani Campus 333031 Rajasthan India
| | - Krishnan Rangan
- Department of Chemistry Birla Institute of Technology and Science Pilani Hyderabad Campus 500078 Telangana India
| | - Anil Kumar
- Department of Chemistry Birla Institute of Technology and Science Pilani Pilani Campus 333031 Rajasthan India
| |
Collapse
|
33
|
Gao F, Sun K, Chen XL, Shi T, Li XY, Qu LB, Zhao YF, Yu B. Visible-Light-Induced Phosphorylation of Imidazo-Fused Heterocycles under Metal-Free Conditions. J Org Chem 2020; 85:14744-14752. [PMID: 33136392 DOI: 10.1021/acs.joc.0c02107] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A metal-free and base-free procedure for the phosphorylation of imidazo[1,2-a]pyridines with phosphine oxides under the irradiation of visible light at room temperature in green solvent was reported, featuring mild and sustainable conditions, convenient operation, as well as good functional group compatibility.
Collapse
Affiliation(s)
- Fan Gao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Kai Sun
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Tao Shi
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Xiao-Yun Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Yu-Fen Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China.,Institute Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| |
Collapse
|
34
|
Yueting W, Yali L, Jing H, Xuezhen L, Ping L, Jie Z. TBAI-mediated sulfenylation of arenes with arylsulfonyl hydrazides in DPDME. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
35
|
Okai H, Tanimoto K, Ohkado R, Iida H. Multicomponent Synthesis of Imidazo[1,2-a]pyridines: Aerobic Oxidative Formation of C–N and C–S Bonds by Flavin–Iodine-Coupled Organocatalysis. Org Lett 2020; 22:8002-8006. [DOI: 10.1021/acs.orglett.0c02929] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hayaki Okai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Kazumasa Tanimoto
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Ryoma Ohkado
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| |
Collapse
|
36
|
Pandey K, Shinde VN, Rangan K, Kumar A. KOH-mediated intramolecular amidation and sulfenylation: A direct approach to access 3-(arylthio)imidazo[1,2-a]pyridin-2-ols. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
37
|
|
38
|
Guo T, Wang H, Cao C, Chen K, Liu Y, Zhang P, Zhao Y, Ma Y. Highly Efficient and Eco‐Benign Synthesis of 3‐Imidazoheterocyclic‐Substituted Phthalides/Isoindolinones in Water under Catalyst‐ and Additive‐Free Conditions. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Tao Guo
- School of Chemistry and Chemical Engineering Henan University of Technology 450001 Zhengzhou Henan P. R. China
| | - Hui‐Jie Wang
- School of Chemistry and Chemical Engineering Henan University of Technology 450001 Zhengzhou Henan P. R. China
| | - Can‐Can Cao
- School of Chemistry and Chemical Engineering Henan University of Technology 450001 Zhengzhou Henan P. R. China
| | - Kuo‐Hong Chen
- School of Chemistry and Chemical Engineering Henan University of Technology 450001 Zhengzhou Henan P. R. China
| | - Yu Liu
- School of Chemistry and Chemical Engineering Henan University of Technology 450001 Zhengzhou Henan P. R. China
| | - Pan‐Ke Zhang
- College of Chemistry, and Institute of Green Catalysis, Henan Institute of Advanced Technology Zhengzhou University 450001 Zhengzhou Henan P. R. China
| | - Yun‐Hui Zhao
- School of Chemistry and Chemical Engineering Hunan University of Science and Technology 411201 Xiangtan Hunan P. R. China
| | - Yong‐Cheng Ma
- Pharmacy Department Fuwai Centeral China Cardiovascular Hospital No.1, Fuwai Road 451464 Zhengzhou Henan P. R. China
| |
Collapse
|
39
|
Wang S, Luo R, Guo L, Zhu T, Chen X, Liu W. Microwave-assisted and catalyst-free sulfenylation of imidazo[2,1- b]thiazoles with sulfonyl hydrazides in water. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1768537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Shaohua Wang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, P.R. of China
- Guangdong Cosmetics Engineering & Technology Research Center, Guangzhou, P.R. of China
| | - Run Luo
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, P.R. of China
| | - Lina Guo
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, P.R. of China
| | - Tianxi Zhu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, P.R. of China
| | - Xu Chen
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, P.R. of China
| | - Wenjie Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, P.R. of China
- Guangdong Cosmetics Engineering & Technology Research Center, Guangzhou, P.R. of China
| |
Collapse
|
40
|
Guo T, Wei XN, Zhang M, Liu Y, Zhu LM, Zhao YH. Catalyst and additive-free oxidative dual C-H sulfenylation of imidazoheterocycles with elemental sulfur using DMSO as a solvent and an oxidant. Chem Commun (Camb) 2020; 56:5751-5754. [PMID: 32319979 DOI: 10.1039/d0cc00043d] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dual C-H sulfenylation was used to obtain 3-vulcanized imidazoheterocycles using odorless elemental sulfur under catalyst- and additive-free conditions. C-H activation of both imidazoheterocycles and arylamines/arenols/indoles was realized by a practical protocol in which DMSO served as both a solvent and an internal oxidant.
Collapse
Affiliation(s)
- Tao Guo
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.
| | - Xu-Ning Wei
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.
| | - Miao Zhang
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yu Liu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.
| | - Li-Min Zhu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.
| | - Yun-Hui Zhao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China.
| |
Collapse
|
41
|
Jiang X, Zhao Z, Shen Z, Chen K, Fang L, Yu C. Flavin/I2
-Catalyzed Aerobic Oxidative C-H Sulfenylation of Aryl-Fused Cyclic Amines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xinpeng Jiang
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Zongchen Zhao
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Zhifeng Shen
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Keda Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P.R. China
| | - Liyun Fang
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| |
Collapse
|
42
|
Xiong F, Zuo Y, Song Y, Zhang L, Zhang X, Xu S, Ren Y. Synthesis of ortho-Phenolic Sulfilimines via an Intermolecular Sulfur Atom Transfer Cascade Reaction. Org Lett 2020; 22:3799-3803. [PMID: 32337987 DOI: 10.1021/acs.orglett.0c01032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To expand the toolbox for the synthesis of ortho-phenolic sulfilimines, sigmatropic rearrangements were introduced to the field of sulfilimine chemistry. Herein we report a N-H sulfenylation/[2,3]-sigmatropic rearrangement cascade reaction. This mild reaction enables commercially available thiols to serve as the sulfenylation reagent and generates water as the sole byproduct. Moreover, the reaction has a wide substrate scope and can be conducted on a gram scale with excellent reaction efficiency.
Collapse
Affiliation(s)
- Feng Xiong
- School of Life Sciences, Nanjing University, Nanjing 210093, China.,Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yingying Zuo
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yinan Song
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Linxing Zhang
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xinhao Zhang
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Shaojian Xu
- Hygiene Sector, Joint Laboratory for Infectious Disease Prevention and Control, Longhua District Center for Disease Control and Prevention, Shenzhen 518109, China
| | - Yan Ren
- Hygiene Sector, Joint Laboratory for Infectious Disease Prevention and Control, Longhua District Center for Disease Control and Prevention, Shenzhen 518109, China
| |
Collapse
|
43
|
Babar DA, Rode HB. Cobalt-Catalyzed Direct Arylation of Imidazo[1,2-a
]pyridine with Aryl Iodides. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dattatraya A. Babar
- Department of Organic Synthesis and Process Chemistry; CSIR-Indian Institute of Chemical Technology; Tarnaka 500007 Hyderabad Telangana India
- CSIR-HRDC Campus; Academy of Scientific and Innovative Research (AcSIR); Kamla Nehru Nagar 201001 Ghaziabad Uttar Pradesh India
| | - Haridas B. Rode
- Department of Organic Synthesis and Process Chemistry; CSIR-Indian Institute of Chemical Technology; Tarnaka 500007 Hyderabad Telangana India
- CSIR-HRDC Campus; Academy of Scientific and Innovative Research (AcSIR); Kamla Nehru Nagar 201001 Ghaziabad Uttar Pradesh India
| |
Collapse
|
44
|
Tashrifi Z, Mohammadi-Khanaposhtani M, Larijani B, Mahdavi M. C3-Functionalization of Imidazo[1,2-a
]pyridines. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901491] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zahra Tashrifi
- Endocrinology and Metabolism Research Center; Endocrinology and Metabolism Clinical Sciences Institute; Tehran University of Medical Sciences; Tehran I.R. Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center; Endocrinology and Metabolism Clinical Sciences Institute; Tehran University of Medical Sciences; Tehran I.R. Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center; Endocrinology and Metabolism Clinical Sciences Institute; Tehran University of Medical Sciences; Tehran I.R. Iran
| |
Collapse
|
45
|
Li B, Shen N, Yang Y, Zhang X, Fan X. Synthesis of naphtho[1′,2′:4,5]imidazo[1,2-a]pyridines via Rh(iii)-catalyzed C–H functionalization of 2-arylimidazo[1,2-a]pyridines with cyclic 2-diazo-1,3-diketones featuring with a ring opening and reannulation. Org Chem Front 2020. [DOI: 10.1039/d0qo00073f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An unprecedented synthesis of functionalized naphtho[1′,2′:4,5]imidazo[1,2-a]pyridines via rhodium-catalyzed cascade reactions of 2-arylimidazo[1,2-a]pyridine-3-carbaldehydes with cyclic α-diazo-1,3-diketones is presented.
Collapse
Affiliation(s)
- Bin Li
- School of Environment
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
| | - Nana Shen
- School of Environment
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
| | - Yujie Yang
- School of Environment
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
| | - Xinying Zhang
- School of Environment
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
| | - Xuesen Fan
- School of Environment
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
| |
Collapse
|
46
|
Wang J, Zhu J, Zhou A. One-pot synthesis of imidazo[1,2-α]pyridine thioethers using imidazo[1,2-α]pyridines, arylsulfonyl chlorides and hydrazine. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1686376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jin Wang
- Department of Pharmaceutical Engineering, Pharmacy School, Jiangsu University, Zhenjiang City, Jiangsu, China
| | - Jie Zhu
- Department of Pharmaceutical Engineering, Pharmacy School, Jiangsu University, Zhenjiang City, Jiangsu, China
| | - Aihua Zhou
- Department of Pharmaceutical Engineering, Pharmacy School, Jiangsu University, Zhenjiang City, Jiangsu, China
| |
Collapse
|
47
|
Reddy RJ, Shankar A, Kumari AH. An Efficient Sequential One‐Pot Approach for the Synthesis of C3‐Functionalized Imidazo[1,2‐
a
]pyridines under Transition‐Metal Free Conditions. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900606] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry University College of ScienceOsmania University Hyderabad 500 007 India
| | - Angothu Shankar
- Department of Chemistry University College of ScienceOsmania University Hyderabad 500 007 India
| | - Arram Haritha Kumari
- Department of Chemistry University College of ScienceOsmania University Hyderabad 500 007 India
| |
Collapse
|
48
|
Reddy KN, Chary DY, Sridhar B, Reddy BVS. Rh(III)-Catalyzed Tandem Bicyclization of 2-Arylimidazo[1,2- a]pyridines with Cyclic Enones for the Construction of Bridged Scaffolds. Org Lett 2019; 21:8548-8552. [PMID: 31609121 DOI: 10.1021/acs.orglett.9b03041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient Rh(III)-catalyzed bicyclization of 2-arylimidazo[1,2-a]pyridine with cyclic enones has been developed for the synthesis of bridged imidazopyridine derivatives in excellent yields up to 95%. The reaction proceeds through a sequential conjugate addition of ortho-C-H bond of aryl group followed by an intramolecular C3-alkylation of imidazopyridine ring in a highly regioselective manner.
Collapse
Affiliation(s)
- K Nagarjuna Reddy
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110025 , India
| | - D Yogananda Chary
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110025 , India
| | | | | |
Collapse
|
49
|
Tanimoto K, Ohkado R, Iida H. Aerobic Oxidative Sulfenylation of Pyrazolones and Pyrazoles Catalyzed by Metal-Free Flavin–Iodine Catalysis. J Org Chem 2019; 84:14980-14986. [DOI: 10.1021/acs.joc.9b02422] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kazumasa Tanimoto
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Ryoma Ohkado
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| |
Collapse
|
50
|
Semwal R, Ravi C, Saxena S, Adimurthy S. Copper-Catalyzed Multicomponent Reactions (MCRs) for Disulfenylation of Imidazo[1,2-a]pyridines Using Elemental Sulfur and Arylhalides and Intramolecular Cyclization of Haloimidazo[1,2-a]pyridines. J Org Chem 2019; 84:14151-14160. [DOI: 10.1021/acs.joc.9b01632] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rashmi Semwal
- Academy of Scientific & Innovative Research, CSIR−Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar-364 002, Gujarat, India
| | - Chitrakar Ravi
- Academy of Scientific & Innovative Research, CSIR−Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar-364 002, Gujarat, India
| | - Soumya Saxena
- Academy of Scientific & Innovative Research, CSIR−Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar-364 002, Gujarat, India
| | - Subbarayappa Adimurthy
- Academy of Scientific & Innovative Research, CSIR−Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar-364 002, Gujarat, India
| |
Collapse
|