1
|
Sun Y, Pan Y, Zhao T, Li J, Gu A, Huang J, Feng H. Assembly of Diverse Allenes via Activator-Free Palladium-Catalyzed Regioselective γ-Arylation of Propargylamines with Boronic Acids. J Org Chem 2025; 90:2662-2669. [PMID: 39920903 DOI: 10.1021/acs.joc.4c02708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Controlling the reaction selectivity to achieve a precision synthesis is a constant concern for chemists. Here, we report a palladium-catalyzed deaminative coupling of propargylamines with arylboronic acids to generate allene skeletons. Importantly, this approach allows the regioselective γ-arylation of unactivated propargyl tertiary amines to access various allenes in the absence of amino-activating reagents. We present a wide range of propargylamines and boronic acids and demonstrate the synthetic application of the target products to construct valuable compounds.
Collapse
Affiliation(s)
- Yan Sun
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Ya Pan
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Tao Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Junwei Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Aiguo Gu
- Jiangsu Product Quality Testing & Inspection Institute, 5 Guanghua Street, Nanjing, Jiangsu Province 210007, China
| | - Junhai Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
2
|
Bai L, Tu D, Deng P, Chen Y, Tang Q. Electrophilic aromatic substitution of electron-rich arenes with N-fluorobenzenesulfonimide (NFSI) as an electrophile. RSC Adv 2024; 14:34811-34815. [PMID: 39483384 PMCID: PMC11526033 DOI: 10.1039/d4ra07008a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024] Open
Abstract
An efficient amidation of electron-rich arenes using NFSI as a nitrogen source has been successfully disclosed. This amidation process can be easily conducted at elevated temperatures, without the need for catalysts or additives. A wide range of arenes substituted with hydroxy, alkoxy, or carbonyl groups were found to be compatible, yielding the desired amination products. Computational study shows that the amidation proceeds via an electrophilic aromatic substitution pathway, comprising a three-step process that includes substitution, addition, and elimination, which differs slightly from the classical mechanism.
Collapse
Affiliation(s)
- Lina Bai
- College of Pharmacy, Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University No. 1 Yixueyuan Road Chongqing 400016 P. R. China
| | - Dewei Tu
- College of Pharmacy, Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University No. 1 Yixueyuan Road Chongqing 400016 P. R. China
| | - Ping Deng
- College of Pharmacy, Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University No. 1 Yixueyuan Road Chongqing 400016 P. R. China
| | - Yongjie Chen
- College of Pharmacy, Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University No. 1 Yixueyuan Road Chongqing 400016 P. R. China
| | - Qiang Tang
- College of Pharmacy, Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University No. 1 Yixueyuan Road Chongqing 400016 P. R. China
| |
Collapse
|
3
|
Gommenginger C, Hourtoule M, Menghini M, Miesch L. Metal free regio - and stereoselective semireduction of CF 3-substituted N-allenamides. Org Biomol Chem 2024; 22:940-944. [PMID: 38180315 DOI: 10.1039/d3ob01859h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
We developed a chemoselective metal-free access for the 1,2- and 2,3-semireduction of CF3-N-allenamides. The enamide functionality of CF3-substituted N-allenamides could be efficiently reduced by Et3SiH/BF3·OEt2 in total regioselectivity and good stereoselectivity, whereas DBU promoted the isomerization of the resulting allyl amide leading exclusively to the E-configurated enamide.
Collapse
Affiliation(s)
- Clément Gommenginger
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France.
| | - Maxime Hourtoule
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France.
| | - Marco Menghini
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France.
| | - Laurence Miesch
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France.
| |
Collapse
|
4
|
Zhou P, Huang L, Xie Y, Ma G, Feng H. Amine-catalyzed metal-free deamination of propargylamines with water toward chalcones. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Xu Z, Xiao L, Fan X, Lin D, Ma L, Nie G, Li Y. Spray-Assisted Interfacial Polymerization to Form Cu II/I@CMC-PANI Film: An Efficient Dip Catalyst for A 3 Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1641. [PMID: 35630864 PMCID: PMC9146272 DOI: 10.3390/nano12101641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 02/01/2023]
Abstract
A novel and interesting method for the preparation of carboxymethylcellulose-polyaniline film-supported copper catalyst (CuII/I@CMC-PANI) has been developed via spray-assisted interfacial polymerization. Using copper sulfate as an initiator, spraying technology was introduced to form a unique interface that is perfectly beneficial to the polymerization of aniline monomers onto carboxymethylcellulose macromolecule chains. To further confirm the composition and structure of the as-prepared hybrid film, it was systematically characterized by inductively coupled plasma (ICP), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and thermogravimetric analysis (TGA) techniques. The Cu content in the fresh CuII/I@CMC-PANI film was determined to be 1.805 mmol/g, and spherical nanoparticles with an average size of ca. 10.04 nm could be observed in the hybrid film. The CuII/I@CMC-PANI hybrid film was exerted as a dip catalyst to catalyze the aldehyde-alkyne-amine (A3) coupling reactions. High yields of the products (up to 97%) were obtained in this catalytic system, and the catalyst could be easily picked up from the reaction mixture by tweezers and reused for at least six consecutive runs, without any discernible losses in its activity in the model reaction. The dip catalyst of CuII/I@CMC-PANI, with easy fabrication, convenient deployment, superior catalytic activity, and great reusability, is expected to be very useful in organic synthesis.
Collapse
Affiliation(s)
- Zhian Xu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China; (Z.X.); (L.X.); (X.F.); (D.L.)
| | - Liang Xiao
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China; (Z.X.); (L.X.); (X.F.); (D.L.)
| | - Xuetao Fan
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China; (Z.X.); (L.X.); (X.F.); (D.L.)
| | - Dongtao Lin
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China; (Z.X.); (L.X.); (X.F.); (D.L.)
| | - Liting Ma
- Photoelectric Information Center, School of Physics and Telecom, Yulin Normal University, Yulin 537000, China;
| | - Guochao Nie
- Photoelectric Information Center, School of Physics and Telecom, Yulin Normal University, Yulin 537000, China;
| | - Yiqun Li
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China; (Z.X.); (L.X.); (X.F.); (D.L.)
| |
Collapse
|
6
|
Oe Y, Yoshida R, Tanaka A, Adachi A, Ishibashi Y, Okazoe T, Aikawa K, Hashimoto T. An N-Fluorinated Imide for Practical Catalytic Imidations. J Am Chem Soc 2022; 144:2107-2113. [PMID: 35084841 DOI: 10.1021/jacs.1c13569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Catalytic imidation using NFSI as the nitrogen source has become an emerging tool for oxidative carbon-nitrogen bond formation. However, the less than ideal benzenesulfonimide moiety is incorporated into products, severely detracting its synthetic value. As a solution to this challenge, we report herein the development of a novel N-fluorinated imide, N-fluoro-N-(fluorosulfonyl)carbamate (NFC), by which the attached imide moiety acts as a modular synthetic handle for one-step derivatization to amines, sulfonamides, and sulfamides. Furthermore, this study revealed the superior reactivity of NFC as showcased in a copper-catalyzed imidation of benzene derivatives and imidocyanation of aliphatic alkenes, overcoming the limitation of NFSI-mediated reactions.
Collapse
Affiliation(s)
- Yuno Oe
- Chiba Iodine Resource Innovation Center and Department of Chemistry, Graduate School of Science, Chiba University, 1-33, Yayoi, Inage, Chiba 263-8522, Japan
| | - Ryuhei Yoshida
- Chiba Iodine Resource Innovation Center and Department of Chemistry, Graduate School of Science, Chiba University, 1-33, Yayoi, Inage, Chiba 263-8522, Japan
| | - Airi Tanaka
- Chiba Iodine Resource Innovation Center and Department of Chemistry, Graduate School of Science, Chiba University, 1-33, Yayoi, Inage, Chiba 263-8522, Japan
| | - Akiya Adachi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuichiro Ishibashi
- Yokohama Technical Center, AGC Inc., 1-1 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takashi Okazoe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan.,Yokohama Technical Center, AGC Inc., 1-1 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kohsuke Aikawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuya Hashimoto
- Chiba Iodine Resource Innovation Center and Department of Chemistry, Graduate School of Science, Chiba University, 1-33, Yayoi, Inage, Chiba 263-8522, Japan
| |
Collapse
|
7
|
Zheng Y, Moegle B, Ghosh S, Perfetto A, Luise D, Ciofini I, Miesch L. Copper-Catalyzed Synthesis of Terminal vs. Fluorine-Substituted N-Allenamides via Addition of Diazo Compounds to Terminal Ynamides. Chemistry 2021; 28:e202103598. [PMID: 34826155 DOI: 10.1002/chem.202103598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 01/05/2023]
Abstract
A copper-mediated coupling reaction between ynamides and diazo-compounds to produce N-allenamides is reported for the first time. This method enables facile and rapid access to terminal N-allenamides by using commercially available TMS-diazomethane with wide functional group compatibility on the nitrogen. Furthermore, the ubiquity of molecules containing a fluorine moiety in medicine, in agricultural, and material science requires the continuous search of new building blocks, including this unique surrogate. The CuI/diazo protocol was successfully applied to the synthesis of fluorine-substituted N-allenamides. DFT calculations provided insights in the mechanism involved.
Collapse
Affiliation(s)
- Yongxiang Zheng
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Baptiste Moegle
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Santanu Ghosh
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Anna Perfetto
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Chemical Theory and Modelling Group, F-75005, Paris, France
| | - Davide Luise
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Chemical Theory and Modelling Group, F-75005, Paris, France
| | - Ilaria Ciofini
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Chemical Theory and Modelling Group, F-75005, Paris, France
| | - Laurence Miesch
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| |
Collapse
|
8
|
Wang SC, Feng MN, Ji Y, Han WW, Ke CY, Zhang QZ, Zhang XL. Ligand-free copper-catalyzed C(sp 3)-H imidation of aromatic and aliphatic methyl sulfides with N-fluorobenzenesulfonimide. RSC Adv 2021; 11:12136-12140. [PMID: 35423744 PMCID: PMC8696451 DOI: 10.1039/d1ra00686j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/20/2021] [Indexed: 12/26/2022] Open
Abstract
A novel and efficient process has been developed for copper-catalyzed C(sp3)-H direct imidation of methyl sulfides with N-fluorobenzenesulfonimide(NFSI). Without using any ligands, various methyl sulfides including aromatic and aliphatic methyl sulfides, can be transformed to the corresponding N-((phenylthio)methyl)-benzenesulfonamide derivatives in good to excellent yields.
Collapse
Affiliation(s)
- Si-Chang Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University Xi'an 710065 China
| | - Ming-Nan Feng
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University Xi'an 710065 China
| | - Yue Ji
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University Xi'an 710065 China
| | - Wei-Wei Han
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University Xi'an 710065 China
| | - Cong-Yu Ke
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University Xi'an 710065 China
| | - Qun-Zheng Zhang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University Xi'an 710065 China
| | - Xun-Li Zhang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University Xi'an 710065 China
| |
Collapse
|
9
|
Rode K, Ramadas Narasimhamurthy P, Rieger R, Krätzschmar F, Breder A. Synthesis of Aminoallenes via Selenium-π-Acid-Catalyzed Cross-Coupling of N-Fluorinated Sulfonimides with Simple Alkynes. European J Org Chem 2021; 2021:1720-1725. [PMID: 33776555 PMCID: PMC7986078 DOI: 10.1002/ejoc.202001673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/15/2021] [Indexed: 02/02/2023]
Abstract
The facile synthesis of aminoallenes, accomplished by a selenium-π-acid-catalyzed cross-coupling of an N-fluorinated sulfonimide with simple, non-activated alkynes, is reported. Until now, aminoallenes were difficult to be accessed by customary means, inasmuch as pre-activated and, in part, intricate starting materials were necessary for their synthesis. In sharp contrast, the current study shows that ordinary internal alkynes can serve as simple and readily available precursors for the construction of the aminoallene motif. The operating reaction conditions tolerate numerous functional groups such as esters, nitriles, (silyl)ethers, acetals, and halogen substituents, furnishing the target compounds in up to 86 % yield.
Collapse
Affiliation(s)
- Katharina Rode
- Institut für Organische und Biomolekulare ChemieUniversität GöttingenTammannstr. 237077GöttingenGermany
| | | | - Rene Rieger
- Faculty of Chemistry and PharmacyUniversity of RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Felix Krätzschmar
- Faculty of Chemistry and PharmacyUniversity of RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Alexander Breder
- Faculty of Chemistry and PharmacyUniversity of RegensburgUniversitätsstraße 3193053RegensburgGermany
| |
Collapse
|
10
|
Sushmita, Aggarwal T, Kumar S, Verma AK. Exploring the behavior of the NFSI reagent as a nitrogen source. Org Biomol Chem 2020; 18:7056-7073. [PMID: 32909593 DOI: 10.1039/d0ob01429j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The diverse biological activities of nitrogen-containing compounds make the construction of the C-N bond of great importance. As N-fluorobenzenesulfonimide, one of the most abundant chemical feedstock, has a dual behaviour, i.e. as an electrophilic fluorination and amidation source, it attracts the attention of synthetic chemists for exploitation. This review comprehensively summarizes the significant progress of the efficient and mild amidation reactions, with an emphasis on approaches for the generation of nitrogen-centered intermediates, related mechanisms and new synthetic chemistry methods that offer opportunities to overcome obstacles in pharmaceutical applications. In this perspective, we discuss the developments in the amidation reaction using NFSI in the past decade. We discuss the recent progress, challenges and future outcomes in the area of amidation chemistry using commercially available NFSI.
Collapse
Affiliation(s)
- Sushmita
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Trapti Aggarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Sonu Kumar
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Akhilesh K Verma
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
11
|
Affiliation(s)
- Asim Kumar Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Susmita Mondal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| |
Collapse
|
12
|
Ghosh P, Mondal S, Hajra A. tert-Butyl Hydroperoxide-Mediated Oxo-Sulfonylation of 2H-Indazoles with Sulfinic Acid toward Indazol-3(2H)-ones. Org Lett 2020; 22:1086-1090. [DOI: 10.1021/acs.orglett.9b04617] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Payel Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Susmita Mondal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| |
Collapse
|
13
|
Kondoh A, Ozawa R, Terada M. Synthesis of Trisubstituted Allenamides Utilizing 1,2-Rearrangement of Dialkoxyphosphoryl Moiety under Brønsted Base Catalysis. CHEM LETT 2019. [DOI: 10.1246/cl.190489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Ryosuke Ozawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|