1
|
Lan R, Yager B, Jee Y, Day CS, Jones AC. Ligand effects, solvent cooperation, and large kinetic solvent deuterium isotope effects in gold(I)-catalyzed intramolecular alkene hydroamination. Beilstein J Org Chem 2024; 20:479-496. [PMID: 38440168 PMCID: PMC10910400 DOI: 10.3762/bjoc.20.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/12/2024] [Indexed: 03/06/2024] Open
Abstract
Kinetic studies on the intramolecular hydroamination of protected variants of 2,2-diphenylpent-4-en-1-amine were carried out under a variety of conditions with cationic gold catalysts supported by phosphine ligands. The impact of ligand on gold, protecting group on nitrogen, and solvent and additive on reaction rates was determined. The most effective reactions utilized more Lewis basic ureas, and more electron-withdrawing phosphines. A DCM/alcohol cooperative effect was quantified, and a continuum of isotope effects was measured with low KIE's in the absence of deuterated alcoholic solvent, increasing to large solvent KIE's when comparing reactions in pure MeOH to those in pure MeOH-d4. The effects are interpreted both within the context of a classic gold π-activation/protodeauration mechanism and a general acid-catalyzed mechanism without intermediate gold alkyls.
Collapse
Affiliation(s)
- Ruichen Lan
- Chemistry, Wake Forest University, 1834 Gulley Rd., Winston-Salem, NC, 27109, USA
| | - Brock Yager
- Chemistry, Wake Forest University, 1834 Gulley Rd., Winston-Salem, NC, 27109, USA
| | - Yoonsun Jee
- Chemistry, Wake Forest University, 1834 Gulley Rd., Winston-Salem, NC, 27109, USA
| | - Cynthia S Day
- Chemistry, Wake Forest University, 1834 Gulley Rd., Winston-Salem, NC, 27109, USA
| | - Amanda C Jones
- Chemistry, Wake Forest University, 1834 Gulley Rd., Winston-Salem, NC, 27109, USA
| |
Collapse
|
2
|
Eisele NF, Peters M, Koszinowski K. Live Monitoring of Anionic Living Polymerizations by Electrospray-Ionization Mass Spectrometry. Chemistry 2023; 29:e202203762. [PMID: 36596722 DOI: 10.1002/chem.202203762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Anionic polymerizations are of exceptional practical importance, but difficult to analyze due to the high reactivity of the growing polymer chains. Here, we demonstrate that electrospray-ionization mass spectrometry (ESI-MS) permits direct observation of the active carbanionic intermediates formed in the anionic ring-opening polymerization of 1-cyanocyclopropanecarboxylate in tetrahydrofuran. This includes the identification of a side product, as well as real-time analysis of the polymerization reaction. From the mass spectra obtained, we can derive not only the mean molar mass and the polydispersity, but also the rate constants for the initiation and the individual propagation steps. The initiation proceeds significantly faster than the propagation steps. Accordingly, the examined reaction corresponds to a living polymerization, as we also confirmed by additional control experiments. Besides giving detailed insight into the reaction system probed here, we also expect the presented methodology to make possible the in-situ analysis of further anionic polymerizations.
Collapse
Affiliation(s)
- Niklas F Eisele
- Institute of Organic and Biomolecular Chemistry, Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Matthias Peters
- Institute of Organic and Biomolecular Chemistry, Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Konrad Koszinowski
- Institute of Organic and Biomolecular Chemistry, Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
3
|
Ji RX, Shen JS. Modulating Dual Fluorescence Emissions in Imine-Based Probes to Distinguish D 2O and H 2O. J Phys Chem B 2023; 127:1229-1236. [PMID: 36696361 DOI: 10.1021/acs.jpcb.2c08070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
How to distinguish D2O and H2O and determine the trace H2O content in D2O solvent, by using molecule-based spectral probes, is an intriguing topic in analytical chemistry, yet considerably few examples remain up to now, likely due to the very similar physical/chemical properties between D2O and H2O. In this work, we found that both the hydrolysis reactions to release fluorescent amines and aggregation-induced emission (AIE) of imines, functioning as dual fluorescence signals to distinguish D2O and H2O, could be modulated by changing the imine structures. The hydrophobicity of imines showed an important contribution to the ability of modulating the hydrolysis reactions and AIE, demonstrating a significant difference on fluorescence signals in D2O and H2O solvents. Among all tested imines, probe 3, condensed from 2-naphthylamine and salicylaldehyde, was found to have the potential ability to act as an ideal candidate for probing the H2O content in D2O solvent, particularly in a low H2O content range, using the ratiomeric emission signals.
Collapse
Affiliation(s)
- Rui-Xue Ji
- College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Jiang-Shan Shen
- College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China.,Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Huaqiao University, Xiamen, Fujian 361021, China
| |
Collapse
|
4
|
Shin MJ. Solvent effect of
D
2
O
on the thermochromic sensitivity of polydiacetylene vesicle systems. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Min Jae Shin
- Department of Cosmetics and Biotechnology Semyung University Jecheon South Korea
| |
Collapse
|
5
|
Truong PT, Miller SG, McLaughlin Sta Maria EJ, Bowring MA. Large Isotope Effects in Organometallic Chemistry. Chemistry 2021; 27:14800-14815. [PMID: 34347912 DOI: 10.1002/chem.202102189] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 01/24/2023]
Abstract
The kinetic isotope effect (KIE) is key to understanding reaction mechanisms in many areas of chemistry and chemical biology, including organometallic chemistry. This ratio of rate constants, kH /kD , typically falls between 1-7. However, KIEs up to 105 have been reported, and can even be so large that reactivity with deuterium is unobserved. We collect here examples of large KIEs across organometallic chemistry, in catalytic and stoichiometric reactions, along with their mechanistic interpretations. Large KIEs occur in proton transfer reactions such as protonation of organometallic complexes and clusters, protonolysis of metal-carbon bonds, and dihydrogen reactivity. C-H activation reactions with large KIEs occur with late and early transition metals, photogenerated intermediates, and abstraction by metal-oxo complexes. We categorize the mechanistic interpretations of large KIEs into the following three types: (a) proton tunneling, (b) compound effects from multiple steps, and (c) semi-classical effects on a single step. This comprehensive collection of large KIEs in organometallics provides context for future mechanistic interpretation.
Collapse
Affiliation(s)
- Phan T Truong
- Department of Chemistry, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97222
| | - Sophia G Miller
- Department of Chemistry, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97222
| | | | - Miriam A Bowring
- Department of Chemistry, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97222
| |
Collapse
|
6
|
Mora KE, Musa MA, Robinson TJ, Mylod G, Bowyer WJ. Solvent Effects on Heterogeneous Rate Constants for Indium Mediated Allylations. J Phys Chem A 2021; 125:2088-2094. [PMID: 33661629 DOI: 10.1021/acs.jpca.0c11457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Indium mediated allylation is a highly selective tool for synthetic chemists to create carbon-carbon bonds, but the first step, heterogeneous reaction of allyl halides at solid indium surfaces, is still poorly understood. For example, the nature of the solvent dramatically affects the rate of reaction, but solvent choice is often based on empirical experiments. Fundamental kinetic studies are the best way to study this effect, but the determination of heterogeneous rate constants is challenging. In an effort to better understand solvent effects, we use optical microscopy to determine heterogeneous rate constants for IMA in aqueous acetonitrile, methanol, ethanol, and 2-propanol. We fit the reaction rate data over a range of mass transport rates using only two adjustable parameters, the heterogeneous rate constant and the mass transport rate. The results emphasize the critical importance of water in determining the rate of reaction. Surprisingly, the polarity of the organic solvent in the mix does not have a major effect on the rate. It is hypothesized that the oxygen atom in water and alcohols is an especially effective Lewis base to stabilize the transition state and the organoindium intermediates, similar to the importance of the oxygen in ethers for the formation of Grignard reagents. This study again demonstrates the power of microscopy for the study of heterogeneous reactions.
Collapse
Affiliation(s)
- Kathryn E Mora
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Megan A Musa
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Troy J Robinson
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Gabriella Mylod
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Walter J Bowyer
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| |
Collapse
|
7
|
Eisele NF, Koszinowski K. Direct Detection of Free and Counterion-Bound Carbanions by Electrospray-Ionization Mass Spectrometry. J Org Chem 2021; 86:3750-3757. [PMID: 33599503 DOI: 10.1021/acs.joc.0c02504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We propose electrospray-ionization (ESI) mass spectrometry as a robust and powerful method for the in situ analysis of carbanions. ESI mass spectrometry selectively probes the charged components of the sampled solution and, thus, is ideally suited for the detection of free carbanions. We demonstrate the potential of this method by analyzing acetonitrile solutions of 15 different carbon acids AH, whose acidities cover a range of 11.1 ≤ pKa(DMSO) ≤ 29.5. After treatment with KOtBu as a strong base, all but the two least acidic compounds were successfully detected as free carbanions A- and/or as potassium-bound aggregates [Kn-1An]-. The association equilibria can be shifted toward smaller aggregates and free carbanions by the addition of the crown ether 18-crown-6, which facilitates the evaluation of the mass spectra. When KOtBu was replaced by other bases (LiOH, LiNiPr2, NaH, NaOH, KOH, NBu4OH) or when tetrahydrofuran or methanol was used as a solvent, carbanions were also successfully observed. For further demonstrating the utility of the proposed method, we applied it to the analysis of the Michael addition of deprotonated dimedone to butenone. ESI mass spectrometry allowed us to follow the decrease of the reactant carbanion and the buildup of the product carbanion in time.
Collapse
Affiliation(s)
- Niklas F Eisele
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Konrad Koszinowski
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
8
|
C–O cleavage via InIII alkoxide intermediates: In situ 13C NMR analysis of the mechanism of an enantioselective in-mediated cyclopropanation reaction. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Role of stable hydrogen isotope variations in water for drug dissolution managing. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2020. [DOI: 10.2478/cipms-2020-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abstract
In the present work, we provide the results of defining by utilizing Laser diffraction spectroscopy, the kinetic isotopic effect of solvent and constant of dissolution rate κ, s−1 of аn active pharmaceutical ingredient (API) in water with a different content of a stable
2
1
H
_2^1{\rm{H}}
isotope on the basis of the laws of first-order kinetics. This approach is based on the analysis of the light scattering profile that occurs when the particles of the dispersion phase in the aquatic environment are covered with a collimated laser beam. For the first time, the dependence of the rate of dissolution is demonstrated not only on the properties of the pharmaceutical substance itself (water solubility mg/ml, octanol–water partition coefficient log P oct/water, topological polar surface area, Abraham solvation parameters, the lattice type), but also on the properties of the solvent, depending on the content of stable hydrogen isotope. We show that the rate constant of dissolution of a sparingly hydrophobic substance moxifloxacin hydrochloride (MF · HCl) in the Mili-Q water is: k=1.20±0.14∙10−2 s−1 at 293.15 K, while in deuterium depleted water, it is k=4.24±0.4∙10−2 s−1. Consequently, we have established the development of the normal kinetic isotopic effect (kH/kD >1) of the solvent. This effect can be explained both by the positions of the difference in the vibrational energy of zero levels in the initial and transition states, and from the position of water clusters giving volumetric effects of salvation, depending on the ratio D/H. The study of kinetic isotopic effects is a method that gives an indication of the mechanism of reactions and the nature of the transition state. The effect of increasing the dissolution of the API, as a function of the D/H ratio, we have discovered, can be used in the chemical and pharmaceutical industries in the study of API properties and in the drug production through improvement in soluble and pharmacokinetic characteristics.
Collapse
|
10
|
Xia A, Xie X, Hu X, Xu W, Liu Y. Dehalogenative Deuteration of Unactivated Alkyl Halides Using D 2O as the Deuterium Source. J Org Chem 2019; 84:13841-13857. [PMID: 31566377 DOI: 10.1021/acs.joc.9b02026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The general dehalogenation of alkyl halides with zinc using D2O or H2O as a deuterium or hydrogen donor has been developed. The method provides an efficient and economic protocol for deuterium-labeled derivatives with a wide substrate scope under mild reaction conditions. Mechanistic studies indicated that a radical process is involved for the formation of organozinc intermediates. The facile hydrolysis of the organozinc intermediates provides the driving force for this transformation.
Collapse
Affiliation(s)
- Aiyou Xia
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , People's Republic of China
| | - Xin Xie
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , People's Republic of China
| | - Xiaoping Hu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , People's Republic of China
| | - Wei Xu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , People's Republic of China
| | - Yuanhong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , People's Republic of China
| |
Collapse
|