1
|
Yang Y, Shi J, Liu C, Liu Q, Yang J, Tong X, Lu J, Wu J. Engineered Polymeric Carbon Nitride for Photocatalytic Diverse Functionalization of Electronic-Rich Alkenes. Angew Chem Int Ed Engl 2025; 64:e202417099. [PMID: 39582385 DOI: 10.1002/anie.202417099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Accepted: 11/24/2024] [Indexed: 11/26/2024]
Abstract
Engineered polymeric carbon nitride represents a promising class of metal-free semiconductor photocatalysts for organic synthesis. Herein, we utilized engineered polymeric carbon nitride nanosheets, which exhibit an increased specific surface area and band gap due to enhanced quantum confinement from vacancy enrichment. These nanosheets serve as a heterogeneous organic semiconductor photocatalyst to facilitate diverse functionalizations of electron-rich alkenes, including arylsulfonylation, aminodifluoroalkylation, and oxytrifluoromethylation. This catalytic system operates under mild conditions, offering excellent functional group compatibility and high yields. Additionally, the catalyst demonstrates outstanding recyclability and efficiency in flow reactors, highlighting its significant potential for industrial applications.
Collapse
Affiliation(s)
- Youqing Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Key Laboratory of Synthetic Chemistry and Applications, Huaibei Normal University, Huaibei, Anhui, 235000, P.R. China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Jiwei Shi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
- Tianjin University International Campus of, Tianjin University Binhai New City, Fuzhou, 350207, P. R. China
| | - Chenguang Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Qiong Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
- Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou, 510070, P. R. China
| | - Jian Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Xiaogang Tong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| |
Collapse
|
2
|
Ikeda T, Tanaka Y, Hashimoto R, Furutani T, Yamawaki M, Suzuki H, Yoshimi Y. Double difunctionalization of vinyl ether tethered nucleophile with electron-deficient alkene in two-molecule photoredox system. Photochem Photobiol Sci 2024; 23:1417-1423. [PMID: 38703275 DOI: 10.1007/s43630-024-00588-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Double difunctionalization of a vinyl ether tethered hydroxy or carbamoyl group with electron-deficient alkenes such as acrylonitrile or acrylic esters was achieved by visible-light irradiation in a two-molecule photoredox system. Use of anhydrous acetonitrile solution as a solvent promoted both dimerization of the radical cation of electron-rich alkene with electron-rich alkene and intramolecular nucleophilic addition to generate an electron-rich radical that was added to electron-deficient alkene to furnish the double difunctionalized product. A variety of electronically differentiated rich and deficient alkenes were used in the photoreaction; a simple construction of a complex carbon framework containing acetal from simple alkenes was successful under mild conditions.
Collapse
Affiliation(s)
- Takumi Ikeda
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Yosuke Tanaka
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Ryoga Hashimoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Toshiki Furutani
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
- Department of Chemistry and Biology, National Institute of Technology, Fukui College, Genshi-cho, Fukui, 916-8507, Japan
| | - Mugen Yamawaki
- Department of Chemistry and Biology, National Institute of Technology, Fukui College, Genshi-cho, Fukui, 916-8507, Japan
| | - Hirotsugu Suzuki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Yasuharu Yoshimi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan.
| |
Collapse
|
3
|
Joseph E, Brar DS, Stuhlsatz G, Tunge JA. Transition metal-free decarboxylative olefination of carboxylic acid salts. Chem Sci 2024; 15:9353-9360. [PMID: 38903232 PMCID: PMC11186341 DOI: 10.1039/d4sc01905a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 06/22/2024] Open
Abstract
The cost-effective and efficient synthesis of alkenes is highly significant due to their extensive applications in both synthetic and polymer industries. A transition metal-free approach has been devised for the chemoselective olefination of carboxylic acid salts. This modular approach provides direct access to valuable electron-deficient styrenes in moderate to good yields. Detailed mechanistic studies suggest anionic decarboxylation is followed by halogen ion transfer. This halogen transfer leads to an umpolung of reactant electronics, allowing for a rate-limiting rebound elimination.
Collapse
Affiliation(s)
- Ebbin Joseph
- Department of Chemistry, The University of Kansas 1567 Irving Hill Road Lawrence Kansas USA
| | - Deshkanwar S Brar
- Department of Chemistry, The University of Kansas 1567 Irving Hill Road Lawrence Kansas USA
| | - Gaven Stuhlsatz
- Department of Chemistry, The University of Kansas 1567 Irving Hill Road Lawrence Kansas USA
| | - Jon A Tunge
- Department of Chemistry, The University of Kansas 1567 Irving Hill Road Lawrence Kansas USA
| |
Collapse
|
4
|
Yoshimi Y. Organic Photoredox Reactions in Two-Molecule Photoredox System. CHEM REC 2024; 24:e202300326. [PMID: 38050955 DOI: 10.1002/tcr.202300326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Indexed: 12/07/2023]
Abstract
Using our recent relevant results, this account shows the featured reactivities of two-molecule photoredox systems compared to one-molecule photoredox systems. The low efficiency of electron transfer processes, such as photoinduced and back-electron transfer, in the two-molecule photoredox system, furnishes unique products through different pathways. The facile replacement of photoredox catalysts with appropriate oxidation/reduction potentials in this system provides valuable insights into photoredox reactions.
Collapse
Affiliation(s)
- Yasuharu Yoshimi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| |
Collapse
|
5
|
Tsai CY, Jhang YJ, Wu YK, Ryu I. Electron-Transfer Protocol for the Hydroxyalkenylation of Alkenes Using 1,2-Bis(phenylsulfonyl)ethylene. Angew Chem Int Ed Engl 2023; 62:e202311807. [PMID: 37850999 DOI: 10.1002/anie.202311807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
We report a protocol for alkene hydroxyalkenylation. Using a persulfate anion as a one-electron-oxidation reagent and 1,2-bis(phenylsulfonyl)ethylene as a radical acceptor in the presence of water, alkenes were converted into the corresponding 1-phenylsulfonyl-4-hydroxyalkenes in good to high yields. The hydroxyalkenylation process involves the nucleophilic hydroxylation of alkene radical cations to give β-hydroxyalkyl radicals, which, after a radical addition/β-elimination sequence, provide the products. We also report a photocatalytic protocol for alkoxyalkenylation.
Collapse
Affiliation(s)
- Chen-Yang Tsai
- Department of Applied Chemistry, National Yang Ming Chiao Tung University (NYCU), Hsinchu, 30010, Taiwan
| | - Yin-Jia Jhang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University (NYCU), Hsinchu, 30010, Taiwan
| | - Yen-Ku Wu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University (NYCU), Hsinchu, 30010, Taiwan
| | - Ilhyong Ryu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University (NYCU), Hsinchu, 30010, Taiwan
- Organization for Research Promotion, Osaka Metropolitan University (OMU), 599-8531, Sakai, Osaka, Japan
| |
Collapse
|
6
|
Luo MJ, Xiao Q, Li JH. Electro-/photocatalytic alkene-derived radical cation chemistry: recent advances in synthetic applications. Chem Soc Rev 2022; 51:7206-7237. [PMID: 35880555 DOI: 10.1039/d2cs00013j] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alkene-derived radical cations are versatile reactive intermediates and have been widely applied in the construction of complex functionalized molecules and cyclic systems for chemical synthesis. Therefore, the synthetic application of these alkene-derived radical cations represents a powerful and green tool that can be used to achieve the functionalization of alkenes partially because the necessity of stoichiometric external chemical oxidants and/or hazardous reaction conditions is eliminated. This review summarizes the recent advances in the synthetic applications of the electro-/photochemical alkene-derived radical cations, emphasizing the key single-electron oxidation steps of the alkenes, the scope and limitations of the substrates, and the related reaction mechanisms. Using electrocatalysis and/or photocatalysis, single electron transfer (SET) oxidation of the CC bonds in the alkenes occurs, generating the alkene-derived radical cations, which sequentially enables the functionalization of translocated radical cations to occur in two ways: the first involves direct reaction with a nucleophile/radical or two molecules of nucleophiles to realize hydrofunctionalization, difunctionalization and cyclization; and the second involves the transformation of the alkene-derived radical cations into carbon-centered radicals using a base followed by radical coupling or oxidative nucleophilic coupling.
Collapse
Affiliation(s)
- Mu-Jia Luo
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. .,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
7
|
Shennan BDA, Berheci D, Crompton JL, Davidson TA, Field JL, Williams BA, Dixon DJ. Branching out: redox strategies towards the synthesis of acyclic α-tertiary ethers. Chem Soc Rev 2022; 51:5878-5929. [PMID: 35770619 DOI: 10.1039/d1cs00669j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acyclic α-tertiary ethers represent a highly prevalent functionality, common to high-value bioactive molecules, such as pharmaceuticals and natural products, and feature as crucial synthetic handles in their construction. As such their synthesis has become an ever-more important goal in synthetic chemistry as the drawbacks of traditional strong base- and acid-mediated etherifications have become more limiting. In recent years, the generation of highly reactive intermediates via redox approaches has facilitated the synthesis of highly sterically-encumbered ethers and accordingly these strategies have been widely applied in α-tertiary ether synthesis. This review summarises and appraises the state-of-the-art in the application of redox strategies enabling acyclic α-tertiary ether synthesis.
Collapse
Affiliation(s)
- Benjamin D A Shennan
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Diana Berheci
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Jessica L Crompton
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Timothy A Davidson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Joshua L Field
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Benedict A Williams
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Darren J Dixon
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
8
|
Tajimi Y, Nachi Y, Inada R, Hashimoto R, Yamawaki M, Ohkubo K, Morita T, Yoshimi Y. 9-Cyano-10-methoxycarbonylanthracene as a Visible Organic Photoredox Catalyst in the Two-Molecule Photoredox System. J Org Chem 2022; 87:7405-7413. [PMID: 35604396 DOI: 10.1021/acs.joc.2c00643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Visible-light-induced decarboxylative and deboronative reactions using two-molecule organic photoredox catalysts, namely, phenanthrene (Phen) and biphenyl (BP), as electron donors and 9-cyano-10-methoxycarbonylanthracene 1a as an electron acceptor were achieved. The high solubility of 1a significantly improved the reaction efficiency and product yield. In addition, the facile tuning of the oxidation potential of the electron-donor molecule via the replacement of Phen with BP enabled the application of the two-molecule photoredox system to a wide range of substrates.
Collapse
Affiliation(s)
- Yuka Tajimi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Yasuhiro Nachi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Ryoko Inada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Ryoga Hashimoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Mugen Yamawaki
- Department of Chemistry and Biology, National Institute of Technology, Fukui College, Genshi-cho, Fukui 916-8507, Japan
| | - Kei Ohkubo
- Institute for Advanced Co-creation Studies, Osaka University, 2-8 Yamada-oka, Suita, Osaka 565-0871, Japan.,Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-8 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Toshio Morita
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Yasuharu Yoshimi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| |
Collapse
|
9
|
Zhou F, Li M, Jiang H, Wu W. Recent Advances in Transformations Involving Electron‐Rich Alkenes: Functionalization, Cyclization, and Cross‐Metathesis Reactions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fei Zhou
- State Key Laboratory of Luminescent Materials and Devices School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 People's Republic of China
| | - Meng Li
- State Key Laboratory of Luminescent Materials and Devices School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 People's Republic of China
| | - Huanfeng Jiang
- State Key Laboratory of Luminescent Materials and Devices School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 People's Republic of China
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 People's Republic of China
| | - Wanqing Wu
- State Key Laboratory of Luminescent Materials and Devices School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 People's Republic of China
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 People's Republic of China
| |
Collapse
|
10
|
Kubosaki S, Takeuchi H, Iwata Y, Tanaka Y, Osaka K, Yamawaki M, Morita T, Yoshimi Y. Visible- and UV-Light-Induced Decarboxylative Radical Reactions of Benzoic Acids Using Organic Photoredox Catalysts. J Org Chem 2020; 85:5362-5369. [DOI: 10.1021/acs.joc.0c00055] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Suzuka Kubosaki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Haruka Takeuchi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Yutaka Iwata
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Yosuke Tanaka
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Kazuyuki Osaka
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Mugen Yamawaki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Toshio Morita
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Yasuharu Yoshimi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| |
Collapse
|
11
|
Yamawaki M, Asano A, Furutani T, Izumi Y, Tanaka Y, Osaka K, Morita T, Yoshimi Y. Photoinduced Electron Transfer-Promoted Reactions Using Exciplex-Type Organic Photoredox Catalyst Directly Linking Donor and Acceptor Arenes. Molecules 2019; 24:E4453. [PMID: 31817353 PMCID: PMC6943656 DOI: 10.3390/molecules24244453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 11/17/2022] Open
Abstract
Directly linked donor and acceptor arenes, such as phenanthrene/naphthalene/biphenyl and 1,3-dicyanobenzene were found to work as photoredox catalysts in the photoreactions of indene, 2,3-dimethyl-2-butene, and 4-methoxyphenylacetic acid. The new stable organic photocatalyst forms an intramolecular exciplex (excited complex) when irradiated in a polar solvent and shows redox catalyst activity, even at low concentrations. To the best of our knowledge, this is the first example of an intramolecular exciplex working as a redox catalyst.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yasuharu Yoshimi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (M.Y.); (A.A.); (T.F.); (Y.I.); (Y.T.); (K.O.); (T.M.)
| |
Collapse
|
12
|
Tang F, Guan Z, He Y. Metal‐Free Regioselective Carbonylation of Imidazo[1,2‐
a
]pyridines via Photoredox Catalysis using Nitrones. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Fang Tang
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 China
| | - Yan‐Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 China
| |
Collapse
|