1
|
Zhang W, Li Z, Hu H, Wang J, Xu ZF, Yu M, Li CY. Copper-Catalyzed Synthesis of Furan-Tethered Benzocyclobutenes via Carbene-Mediated 1,4-Sulfinate Migration-Annulation. Org Lett 2024; 26:5453-5457. [PMID: 38913009 DOI: 10.1021/acs.orglett.4c01679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
A copper-catalyzed intramolecular cascade reaction of conjugated enynones has been achieved via a pivotal 1,4-sulfinate migration step. This process leverages a cost-effective and ecofriendly copper salt as catalyst, enabling the efficient construction of five- and four-membered rings in a rapid, sequential manner, producing furan-tethered benzocyclobutenes in good to excellent yields under mild conditions. The reaction is characterized by 100% atom economy, outstanding efficiency, and excellent diastereoselectivity in the cases studied. The robustness of this method is evidenced by its compatibility with air exposure and the use of undistilled, commercially available solvents, further enhancing its practicality.
Collapse
Affiliation(s)
- Wenzheng Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, China
| | - Ziwei Li
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, China
| | - Huiqin Hu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, China
| | - Jingwei Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, China
| | - Ze-Feng Xu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, China
| | - Mingming Yu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, China
| | - Chuan-Ying Li
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, China
| |
Collapse
|
2
|
Hong K, Shu J, Dong S, Zhang Z, He Y, Liu M, Huang J, Hu W, Xu X. Asymmetric Three-Component Reaction of Enynal with Alcohol and Imine as An Expeditious Track to Afford Chiral α-Furyl-β-amino Carboxylate Derivatives. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kemiao Hong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jirong Shu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shanliang Dong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhijing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yicheng He
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Mengting Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingjing Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Dong K, Liu M, Xu X. Recent Advances in Catalytic Alkyne Transformation via Copper Carbene Intermediates. Molecules 2022; 27:3088. [PMID: 35630567 PMCID: PMC9144650 DOI: 10.3390/molecules27103088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
As one of the abundant and inexpensive metals on the earth, copper has demonstrated broad applications in synthetic chemistry and catalysis. Among these copper-catalyzed advances, copper carbenes are versatile and reactive intermediates that can mediate a variety of transformations, which have attracted much attention in the past decades. The present review summarizes two different reaction models that take place between a copper carbene intermediate and alkyne species, including the cross-coupling reaction of copper carbene intermediate with terminal alkyne, and the addition of copper carbene intermediate onto the C-C triple bond. This article will cover the profile from 2010 to 2021 by placing emphasis on the detailed catalytic models and highlighting the synthetic applications offered by these practical and mild methods.
Collapse
Affiliation(s)
- Kuiyong Dong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Mengting Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
| |
Collapse
|
4
|
Masal DP, Choudhury R, Singh A, Reddy DS. Ready Access to Densely Substituted Furans Using Tsuji-Wacker-Type Cyclization. J Org Chem 2021; 87:556-568. [PMID: 34962781 DOI: 10.1021/acs.joc.1c02567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A competent method for the construction of highly substituted furans catalyzed by Pd(II) and Cu(II) chloride has been developed. The method provides easy access to di-, tri-, and tetrasubstituted furans from corresponding diols with relatively mild conditions in a unified strategy. The developed method has been successfully tested with more than 25 substrates, which resulted in furans of multiple substitution patterns with up to 84% isolated yields.
Collapse
Affiliation(s)
- Dattatraya P Masal
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rahul Choudhury
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aman Singh
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - D Srinivasa Reddy
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| |
Collapse
|
5
|
Ping Y, Chang T, Wang J. Carbene insertion into acyl C-H bonds: Rh(III)-catalyzed cross-coupling of 2-aminobenzaldehydes with conjugated enynones. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Zhu XQ, Hong P, Zheng YX, Zhen YY, Hong FL, Lu X, Ye LW. Copper-catalyzed asymmetric cyclization of alkenyl diynes: method development and new mechanistic insights. Chem Sci 2021; 12:9466-9474. [PMID: 34349921 PMCID: PMC8278876 DOI: 10.1039/d1sc02773e] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/11/2021] [Indexed: 12/30/2022] Open
Abstract
Metal carbenes have proven to be one of the most important and useful intermediates in organic synthesis, but catalytic asymmetric reactions involving metal carbenes are still scarce and remain a challenge. Particularly, the mechanistic pathway and chiral induction model in these asymmetric transformations are far from clear. Described herein is a copper-catalyzed asymmetric cyclization of alkenyl diynes involving a vinylic C(sp2)–H functionalization, which constitutes the first asymmetric vinylic C(sp2)–H functionalization through cyclopentannulation. Significantly, based on extensive mechanistic studies including control experiments and theoretical calculations, a revised mechanism involving a novel type of endocyclic copper carbene via remote-stereocontrol is proposed, thus providing new mechanistic insight into the copper-catalyzed asymmetric diyne cyclization and representing a new chiral control pattern in asymmetric catalysis based on remote-stereocontrol and vinyl cations. This method enables the practical and atom-economical construction of an array of valuable chiral polycyclic-pyrroles in high yields and enantioselectivities. A copper-catalyzed asymmetric cyclization of alkenyl diynes involving a vinylic C(sp2)–H functionalization is reported, enabling the construction of various valuable chiral polycyclic-pyrroles in high yields and enantioselectivities.![]()
Collapse
Affiliation(s)
- Xin-Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Pan Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yan-Xin Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Ying-Ying Zhen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Feng-Lin Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
7
|
Hong FL, Chen YB, Ye SH, Zhu GY, Zhu XQ, Lu X, Liu RS, Ye LW. Copper-Catalyzed Asymmetric Reaction of Alkenyl Diynes with Styrenes by Formal [3 + 2] Cycloaddition via Cu-Containing All-Carbon 1,3-Dipoles: Access to Chiral Pyrrole-Fused Bridged [2.2.1] Skeletons. J Am Chem Soc 2020; 142:7618-7626. [PMID: 32237743 DOI: 10.1021/jacs.0c01918] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The generation of metal-containing 1,3-dipoles from metal carbenes represents a significant advance in 1,3-dipolar cycloaddition reactions. However, these transformations have so far been limited to reactions based on diazo compounds or triazoles as precursors. Herein, we disclose a copper-catalyzed enantioselective reaction of alkenyl N-propargyl ynamides with styrene derivatives by formal [3 + 2] cycloaddition via Cu-containing all-carbon 1,3-dipoles, which constitutes a novel way for the generation of metal-containing 1,3-dipoles via metal carbenes. This protocol allows the practical and atom-economical synthesis of valuable chiral pyrrole-fused bridged [2.2.1] skeletons in moderate to good yields (up to 90% yield) with excellent diastereoselectivities (dr > 50/1) and generally excellent enantioselectivities (up to >99% ee).
Collapse
Affiliation(s)
- Feng-Lin Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yang-Bo Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Si-Han Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Guang-Yu Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xin-Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Rai-Shung Liu
- Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
8
|
Li F, Zhang JZ, Xia F. How CuCl and CuCl 2 Insert into C-N Bonds of Diazo Compounds: An Electronic Structure and Mechanistic Study. J Phys Chem A 2020; 124:2029-2035. [PMID: 32083869 DOI: 10.1021/acs.jpca.9b11991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The transition-metal Cu catalysts CuCl and CuCl2 have been widely employed to catalyze a series of chemical reactions with diazo compounds because of their high efficiency and selectivity. However, how to yield the active Cu carbene species from the Cu catalysts and diazo compounds still remains unclear. In this work, we performed a comprehensive theoretical investigation on the electronic structures of CuCl and CuCl2 in solution. The results indicate that the most stable structures for CuCl and CuCl2 are dimer and monomer, respectively. The C-N bond insertion of aryldiazoacetate by CuCl yields a stable bimetallic carbene species, which differs from the monometallic carbene generated from CuCl2.
Collapse
Affiliation(s)
- Fengyu Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - John Zenghui Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at New York University Shanghai, East China Normal University, Shanghai 200062, China
| | - Fei Xia
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at New York University Shanghai, East China Normal University, Shanghai 200062, China
| |
Collapse
|
9
|
Ruan W, Yang T, Shi C, Bai W, Sung HHY, Williams ID, Lin Z, Jia G. Substituent Effect on the Reactions of OsCl2(PPh3)3 with o-Ethynylphenyl Carbonyl Compounds. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wenqing Ruan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Tilong Yang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chuan Shi
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wei Bai
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Herman H. Y. Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ian D. Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
10
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Affiliation(s)
- Antonia Rinaldi
- Dipartimento di Chimica "U. Schiff"; Università degli Studi di Firenze; Via della Lastruccia 13 50019 Sesto F.no Italy
| | - Dina Scarpi
- Dipartimento di Chimica "U. Schiff"; Università degli Studi di Firenze; Via della Lastruccia 13 50019 Sesto F.no Italy
| | - Ernesto G. Occhiato
- Dipartimento di Chimica "U. Schiff"; Università degli Studi di Firenze; Via della Lastruccia 13 50019 Sesto F.no Italy
| |
Collapse
|
12
|
Golovanov AA, Gusev DM, Odin IS, Zlotskii SS. Conjugated 2,4,1- and 1,4,3-enynones as polycentricelectrophiles in synthesis of heterocyclic compounds. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02462-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Rinaldi A, Langé V, Gómez-Bengoa E, Zanella G, Scarpi D, Occhiato EG. Synthesis of Indenes by Tandem Gold(I)-Catalyzed Claisen Rearrangement/Hydroarylation Reaction of Propargyl Vinyl Ethers. J Org Chem 2019; 84:6298-6311. [DOI: 10.1021/acs.joc.9b00646] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Antonia Rinaldi
- Dipartimento di Chimica “U. Schiff”, Università degli Studi di Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
| | - Vittoria Langé
- Dipartimento di Chimica “U. Schiff”, Università degli Studi di Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
| | - Enrique Gómez-Bengoa
- Departamento de Química Orgánica I, Universidad del País Vasco/UPV-EHU, Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Giovanna Zanella
- Departamento de Química Orgánica I, Universidad del País Vasco/UPV-EHU, Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Dina Scarpi
- Dipartimento di Chimica “U. Schiff”, Università degli Studi di Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
| | - Ernesto G. Occhiato
- Dipartimento di Chimica “U. Schiff”, Università degli Studi di Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
14
|
Mao S, Wan Y, Peng H, Luo L, Deng G. Synthesis of Trifunctionalized Naphtho[1,2-b]furans Based on the Strategy for the Construction of Both Furan and Naphthalene Cycle. J Org Chem 2019; 84:5261-5270. [DOI: 10.1021/acs.joc.9b00058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shanjian Mao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yinbo Wan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Haiyun Peng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Li Luo
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
15
|
Mao S, Tang L, Wu C, Tu X, Gao Q, Deng G. Ag(I)-Catalyzed Tandem Reaction of Conjugated Ene-yne-ketones in the Presence of PhI(OAc) 2 and Triethylamine: Synthesis of 2-Alkenylfurans. Org Lett 2019; 21:2416-2420. [PMID: 30912661 DOI: 10.1021/acs.orglett.9b00712] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Silver-catalyzed tandem cyclization-elimination reactions of conjugated ene-yne-ketones in PhI(OAc)2/triethylamine system lead to the formation of 2-alkenylfurans. 2-Furylsilver carbene and phenyliodonium ylide are proposed as the key intermediates in these transformations.
Collapse
Affiliation(s)
- Shanjian Mao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha 410081 , China
| | - Ling Tang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha 410081 , China
| | - Chenggui Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha 410081 , China
| | - Xianxia Tu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha 410081 , China
| | - Qianwen Gao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha 410081 , China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha 410081 , China
| |
Collapse
|
16
|
Zhang T, Chen F, Zhang XH, Qian PC, Zhang XG. Palladium-Catalyzed Tandem Carbocyclization and Hetroarylation for the Synthesis of 2-(Trifluoromethyl)indenylmethyleneindoles. J Org Chem 2019; 84:307-313. [PMID: 30523685 DOI: 10.1021/acs.joc.8b02781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A palladium-catalyzed tandem cyclization and cross-coupling reaction of o-(2-chlorovinyl)alkynylbenzenes with indoles/pyrroles is developed. The process proceeds via intramolecular carbocyclization and subsequent hetroarylation to afford previously unknown trifluoromethyl-containing indenylmethyleneindoles, which are potentially useful in drug design.
Collapse
Affiliation(s)
- Tao Zhang
- College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou 325035 , China
| | - Fan Chen
- College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou 325035 , China
| | - Xiao-Hong Zhang
- College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou 325035 , China
| | - Peng-Cheng Qian
- College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou 325035 , China
| | - Xing-Guo Zhang
- College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou 325035 , China
| |
Collapse
|
17
|
Ping Y, Chang T, Wang K, Huo J, Wang J. Palladium-catalyzed oxidative borylation of conjugated enynones through carbene migratory insertion: synthesis of furyl-substituted alkenylboronates. Chem Commun (Camb) 2019; 55:59-62. [DOI: 10.1039/c8cc09024f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A new method for the synthesis of furyl-substituted alkenylboronates has been developed by palladium-catalyzed oxidative borylation reaction of conjugated enynones.
Collapse
Affiliation(s)
- Yifan Ping
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Taiwei Chang
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Kang Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Jingfeng Huo
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| |
Collapse
|