1
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
2
|
Oyejobi AO, Huang J, Luo YX, Tang XY, Wang L. Photooxidative Reaction of β-Oxoamides with Amines for the Synthesis of Pyrrolin-4-ones under External Photocatalyst-Free Conditions. J Org Chem 2024; 89:9972-9978. [PMID: 38954774 DOI: 10.1021/acs.joc.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The incorporation of oxygen atoms from air under aerobic conditions plays an important role in organic synthesis. Herein, Brønsted acids are found to be a two-in-one strategic catalyst to transform enamines from β-oxoamides and amines to pyrrolin-4-ones without an external photocatalyst under visible-light conditions. The Brønsted acid can inhibit the C-C bond fragmentation of the [2 + 2] adduct from enamine and 1O2, but most importantly, it can form photosensitizers with enamine and pyrrolin-4-one product by acidochromism to promote the 1O2 generation.
Collapse
Affiliation(s)
- Aanuoluwapo O Oyejobi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Jie Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yun-Xuan Luo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiang-Ying Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Long Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
3
|
Li J, Wang Y, Zhang R, Li J, Dong D. Triflic Acid-Promoted 1,2-Amino Migration Reactions in α-Arylaminoacrylamides: Access to Substituted β-Aminoamides. J Org Chem 2024; 89:8861-8870. [PMID: 38845104 DOI: 10.1021/acs.joc.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A straightforward synthesis of substituted β-aminoamides from α-arylamino-β-hydroxyacrylamides, α-arylamino-β-oxoamides, or their tautomeric mixture has been described. The (E)-enol triflate intermediates are readily generated in situ from these substrates in the presence of triflic anhydride (Tf2O) and triethylamine (Et3N) in a chemoselective manner and undergo triflic acid (TfOH)-promoted cyclization and ring-opening reactions with alcohols to deliver the desired products. The one-pot two-step synthetic protocol features the use of readily available starting materials, mild reaction conditions, high chemoselectivity, operational simplicity, and a wide range of synthetic potential of the products.
Collapse
Affiliation(s)
- Jiawang Li
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yu Wang
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Rui Zhang
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jiacheng Li
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Dewen Dong
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
4
|
Chen K, Zhao B, Liu Y, Wan JP. Thiazole-5-carbaldehyde Synthesis by Cascade Annulation of Enaminones and KSCN with Dess-Martin Periodinane Reagent. J Org Chem 2022; 87:14957-14964. [PMID: 36260927 DOI: 10.1021/acs.joc.2c01881] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Dess-Martin periodinane (DMP) reagent-mediated reactions of tertiary enaminones with potassium thiocyanate for the synthesis of thiazole-5-carbaldehydes are developed. The product formation involves cascade hydroxyl thiocyanation of the C═C double bond, intramolecular hydroamination of the C≡N bond, and thiazole annulation by condensation on the ketone carbonyl site, representing novel reaction pathways in the reactions between enaminones and thiocyanate salt. DMP plays dual roles in mediating the free radical thiocyanation and inducing the unconventional selective thiazole-5-carbaldehyde formation by masking the in situ generated formyl group during the reaction process.
Collapse
Affiliation(s)
- Kang Chen
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| | - Baoli Zhao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - Yunyun Liu
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China.,Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - Jie-Ping Wan
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| |
Collapse
|
5
|
Li B, Yuan J, Ye X, Zhang R, Li J, Wang Y, Hu J, Dong D. PIFA-Mediated Tandem Hofmann-Type Rearrangement and Cyclization Reaction of α-Acyl-β-aminoacrylamides: Access to Polysubstituted Oxazol-2(3 H)-ones. J Org Chem 2021; 86:17944-17954. [PMID: 34872249 DOI: 10.1021/acs.joc.1c02276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient and straightforward synthesis of polysubstituted oxazol-2(3H)-ones has been developed via a tandem Hofmann-type rearrangement and cyclization reaction of various α-acyl-β-aminoacrylamides mediated by phenyl iodine(III) bis(trifluoroacetate) (PIFA) in the presence of trifloroacetic acid (TFA). This novel protocol features readily available starting materials, mild reaction conditions, simple execution, high chemoselectivity, good functional group tolerance, and a metal-free oxidation process.
Collapse
Affiliation(s)
- Baibin Li
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jingwen Yuan
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xuebei Ye
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Rui Zhang
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jiacheng Li
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yu Wang
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jiana Hu
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Dewen Dong
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
6
|
Agafonova AV, Smetanin IA, Rostovskii NV, Khlebnikov AF, Novikov MS. Synthesis of 2-(2-Pyridyl)-2 H-azirines via Metal-Free C-C Cross-Coupling of Bromoazirines with 2-Stannylpyridines. Org Lett 2021; 23:8045-8049. [PMID: 34597057 DOI: 10.1021/acs.orglett.1c03060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A high-yield method for the introduction of a 2-pyridyl substituent in the C2 position of the three-membered ring of 2-bromo-2H-azirine-2-carboxylic acid derivatives by the direct cross-coupling with 2-(trialkylstannyl)pyridines has been described. The reaction works well with 3-, 4-, or 5-substituted 2-stannylpyridines and can be also employed for the synthesis of 2-(thiazol-2-yl)-2H-azirines. According to DFT calculations, the reaction proceeds through the sequence of SN2'-substitution of bromine, 1,4-stannyl shift, and [2,3]-sigmatropic shift of the pyridine ring.
Collapse
Affiliation(s)
- Anastasiya V Agafonova
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Ilia A Smetanin
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Nikolai V Rostovskii
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alexander F Khlebnikov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Mikhail S Novikov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
7
|
Arya GC, Kaur K, Jaitak V. Isoxazole derivatives as anticancer agent: A review on synthetic strategies, mechanism of action and SAR studies. Eur J Med Chem 2021; 221:113511. [PMID: 34000484 DOI: 10.1016/j.ejmech.2021.113511] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is the second most leading cause of death among women. Multiple drugs have been approved by FDA for the treatment of BC. The major drawbacks of existing drugs are the development of resistance, toxicity, selectivity problem. The other therapies like hormonal therapy, surgery, radiotherapy, and immune therapy are in use but showed many side effects like bioavailability issues, non-selectivity, pharmacokinetic-pharmacodynamic problems. Therefore, there is an urgent need to develop new moieties that are nonviolent and more effective in the treatment of cancer. Isoxazole derivatives have gain popularity in recent years due to anticancer potential with the least side effects. These derivatives act as an anticancer agent with different mechanisms like inducing apoptosis, aromatase inhibition, disturbing tubulin congregation, topoisomerase inhibition, HDAC inhibition, and ERα inhibition. In this article, we have explored the synthetic strategies, anticancer mechanism of action along with SAR studies of isoxazole derivatives.
Collapse
Affiliation(s)
- Girish Chandra Arya
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghhudha, Bathinda, Pb, 151401, India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghhudha, Bathinda, Pb, 151401, India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghhudha, Bathinda, Pb, 151401, India.
| |
Collapse
|
8
|
Bisht GS, Dunchu TD, Gnanaprakasam B. Synthesis of Quaternary Spirooxindole 2H-Azirines under Batch and Continuous Flow Condition and Metal Assisted Umpolung Reactivity for the Ring-Opening Reaction. Chem Asian J 2021; 16:656-665. [PMID: 33464707 DOI: 10.1002/asia.202001418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/19/2021] [Indexed: 11/06/2022]
Abstract
An efficient and new approach for the synthesis of spirooxindole 2H-azirines via intramolecular oxidative cyclization of 3-(amino(phenyl)methylene)-indolin-2-one derivatives in the presence of I2 and Cs2 CO3 under batch/continuous flow is described. This method is mild and facile to synthesize a variety of spirooxindole 2H-azirines derivatives in gram-scale. Furthermore, we have synthesized spiroaziridine derivatives from spirooxindole 2H-azirines derivatives via addition of Grignard reagent. In addition, we discloses an metal assisted attack of Grignard nucleophile at N-centre rather than C- of the spirooxindole 2H-azirines, which concurrently underwent ring opening of transient aziridines to afford N-substituted Z-3-(aminophenyl)indolin-2-one. A plausible mechanism for azirination and ring-opening reaction is also presented.
Collapse
Affiliation(s)
- Girish Singh Bisht
- Department of Chemistry, Indian Institute of Science Education and Research, 411008, Pune, India
| | - Tenzin Dolkar Dunchu
- Department of Chemistry, Indian Institute of Science Education and Research, 411008, Pune, India
| | - Boopathy Gnanaprakasam
- Department of Chemistry, Indian Institute of Science Education and Research, 411008, Pune, India
| |
Collapse
|
9
|
Antony P M, Balaji GL, Iniyavan P, Ila H. Reaction of 1,3-Bis(het)arylmonothio-1,3-diketones with Sodium Azide: Regioselective Synthesis of 3,5-Bis(het)arylisoxazoles via Intramolecular N–O Bond Formation. J Org Chem 2020; 85:15422-15436. [DOI: 10.1021/acs.joc.0c02216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mary Antony P
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Gantala L. Balaji
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Pethaperumal Iniyavan
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Hiriyakkanavar Ila
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
10
|
Babaoglu E, Hilt G. Electrochemical Iodine-Mediated Oxidation of Enamino-Esters to 2H-Azirine-2-Carboxylates Supported by Design of Experiments. Chemistry 2020; 26:8879-8884. [PMID: 32220135 PMCID: PMC7497194 DOI: 10.1002/chem.202001465] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 11/23/2022]
Abstract
An electrochemical iodine-mediated transformation of enamino-esters for the synthesis of 2H-azirine-2-carboxylates is presented. In addition, a thermic conversion of azirines to 4-carboxy-oxazoles in quantitative yield without purification was described. Both classes 2H-azirines-2-carboxylates and the 4-carboxy-oxazoles are substructures in natural products and therefore are of considerable interest for synthetic and pharmaceutical chemists. The optimization was not performed in a conventional manner with a one-factor-at-a-time process but with a Design of Experiments (DoE) approach. Beside a broad substrate scope the reaction was also employed to a robustness screen, a sensitivity assessment, and complemented with mechanistic considerations from cyclic voltammetry experiments.
Collapse
Affiliation(s)
- Emre Babaoglu
- Institut für ChemieCarl von Ossietzky Universität OldenburgCarl-von-Ossietzky Strasse 9–1126129OldenburgGermany
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435043MarburgGermany
| | - Gerhard Hilt
- Institut für ChemieCarl von Ossietzky Universität OldenburgCarl-von-Ossietzky Strasse 9–1126129OldenburgGermany
| |
Collapse
|
11
|
Bhujanga Rao C, Zhang N, Hu J, Wang Y, Liang Y, Zhang R, Yuan J, Dong D. Tf 2O-Mediated Cyclization of α-Acyl-β-(2-aminopyridinyl)acrylamides: Access to N-Substituted 4 H-Pyrido[1,2- a]pyrimidin-4-imines. J Org Chem 2020; 85:4695-4705. [PMID: 32149512 DOI: 10.1021/acs.joc.9b03495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A facile and efficient direct synthesis of N-substituted 4H-pyrido[1,2-a]pyrimidin-4-imines is developed from α-acyl-β-(2-aminopyridinyl)acrylamides mediated by triflic anhydride (Tf2O) in the presence of 2-chloropyridine. This amide activation protocol features mild reaction conditions, simple execution, excellent yields, and high chemoselectivity, and is also applied to the synthesis of substituted 4H-pyrido[1,2-a]pyrimidin-4-ones via a practical one-pot procedure.
Collapse
Affiliation(s)
- Chitturi Bhujanga Rao
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Ning Zhang
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jiana Hu
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yu Wang
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yongjiu Liang
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Rui Zhang
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jingwen Yuan
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Dewen Dong
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
12
|
Zhou Y, Wang Y, Song Z, Nakano T, Song Q. Cu-catalyzed C–N bond cleavage of 3-aminoindazoles for the C–H arylation of enamines. Org Chem Front 2020. [DOI: 10.1039/c9qo01177c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have presented a novel Cu-catalyzed stereoselective C–H arylation of enamines by using 3-aminoindazoles arylating agents via oxidative cleavage of two C–N bonds.
Collapse
Affiliation(s)
- Yao Zhou
- Institute of Next Generation Matter Transformation
- College of Materials Science & Engineering and College of Chemical Engineering at Huaqiao University
- Xiamen
- P. R. China
| | - Ya Wang
- Institute of Next Generation Matter Transformation
- College of Materials Science & Engineering and College of Chemical Engineering at Huaqiao University
- Xiamen
- P. R. China
| | - Zhiyi Song
- Institute for Catalysis (ICAT)
- Hokkaido university
- Sapporo 001-0021
- Japan
| | - Tamaki Nakano
- Institute for Catalysis (ICAT)
- Hokkaido university
- Sapporo 001-0021
- Japan
| | - Qiuling Song
- Institute of Next Generation Matter Transformation
- College of Materials Science & Engineering and College of Chemical Engineering at Huaqiao University
- Xiamen
- P. R. China
- Fujian University Key Laboratory of Molecule Synthesis and Function Discovery
| |
Collapse
|
13
|
Ramkumar N, Voskressensky LG, Sharma UK, Van der Eycken EV. Recent approaches to the synthesis of 2H-azirines. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02539-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Yuan J, Deng B, Liang Y, Rao CB, Zhang R, Zhao Y, Dong D. PIFA/TEMPO‐Mediated Oxidative Cascade Cyclization of
α
‐[(
β
‐Amino)propenoyl]‐Alkylamides: Access to Polysubstituted 3,7‐Dihydrooxazolo[4,5‐
c
]pyridine‐2,4,6(5
H
)‐triones. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900741] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jingwen Yuan
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Bicheng Deng
- Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of EducationJilin Normal University Changchun 130103 People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Yongjiu Liang
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Chitturi Bhujanga Rao
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Rui Zhang
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Yanning Zhao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of EducationJilin Normal University Changchun 130103 People's Republic of China
| | - Dewen Dong
- Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of EducationJilin Normal University Changchun 130103 People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| |
Collapse
|
15
|
Deng B, Rao CB, Zhang R, Li J, Liang Y, Zhao Y, Gao M, Dong D. A Formal [3+2] Annulation of
β
‐Oxoamides and 3‐Alkyl‐ or 3‐Aryl‐Substituted Prop‐2‐Ynyl Sulfonium Salts: Substrate‐Controlled Chemoselective Synthesis of Substituted
γ
‐Lactams and Furans. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Bicheng Deng
- Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of EducationJilin Normal University Changchun 130103 People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Chitturi Bhujanga Rao
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Rui Zhang
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Jiacheng Li
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Yongjiu Liang
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Yanning Zhao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of EducationJilin Normal University Changchun 130103 People's Republic of China
| | - Ming Gao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of EducationJilin Normal University Changchun 130103 People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Dewen Dong
- Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of EducationJilin Normal University Changchun 130103 People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| |
Collapse
|
16
|
|
17
|
Khlebnikov AF, Novikov MS, Rostovskii NV. Advances in 2H-azirine chemistry: A seven-year update. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|