1
|
Chen S, Wu G, Wang P, Zheng Z, Wang W, Gao Y. Active Organic Salts Enabling Non-Intrusive Electrolyte Presodiation Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502251. [PMID: 40326151 DOI: 10.1002/adma.202502251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Na-ion batteries show great promise, but their practical utilization is hindered by irreversible Na-ion loss during cell formation, resulting in initial coulombic efficiencies typically below 80%. Conventional presodiation methods, which involve solid additives in the cathode, can compromise electrode integrity and leave deteriorated residues, especially with high Na ion compensation (20%). An electrolyte presodiation approach is introduced that utilizes sodium thiocyanate (NaSCN) as an electrolyte additive, discovered through cheminformatics and machine learning. This organic salt decomposes at 3.3-4.0 V, releasing active Na ions and forming a cosolvent without damaging the electrode and the cell, as confirmed by spectroscopic and microscopic analyses. The method improves the initial coulombic efficiency of a hard carbon|P2-Na2/3Ni1/3Mn1/3Ti1/3O2 pouch cell from 80.8% to 95.2%, with a capacity retention of 84.5% over 400 cycles. These findings present a practical and non-intrusive way to address Na-ion deficiency challenges in Na-ion batteries.
Collapse
Affiliation(s)
- Shu Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Collaborative Innovation Center of Chemistry for Energy Materials, Research Center of AI for Polymer Science, Fudan University, Shanghai, 200438, China
| | - Guanbin Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Collaborative Innovation Center of Chemistry for Energy Materials, Research Center of AI for Polymer Science, Fudan University, Shanghai, 200438, China
| | - Pai Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Collaborative Innovation Center of Chemistry for Energy Materials, Research Center of AI for Polymer Science, Fudan University, Shanghai, 200438, China
| | - Zilong Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Collaborative Innovation Center of Chemistry for Energy Materials, Research Center of AI for Polymer Science, Fudan University, Shanghai, 200438, China
| | - Wenwen Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Collaborative Innovation Center of Chemistry for Energy Materials, Research Center of AI for Polymer Science, Fudan University, Shanghai, 200438, China
| | - Yue Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Collaborative Innovation Center of Chemistry for Energy Materials, Research Center of AI for Polymer Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
2
|
Grishin SS, Ustyuzhanin AO, Vil' VA, Terent'ev AO. Electrochemically Mediated Synthesis of Cyanated Heterocycles from α-amino Esters, Pyridine-2-carbaldehydes and NH 4SCN as Cyano Group Source. Chemistry 2025:e202404051. [PMID: 39757121 DOI: 10.1002/chem.202404051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
The electrochemically mediated cyanation/annulation process with in situ cyanide ion generation from NH4SCN and multi-step oxidative construction of CN-functionalized heterocycles from easily available α-amino esters and pyridine-2-carbaldehydes has been discovered. Depending on the nature of the α-amino ester, 1-cyano-imidazo[1,5-a]pyridine-3-carboxylates, 3-alkyl- and 3-aryl-imidazo[1,5-a]pyridines-1-carbonitriles, and the first reported 4-oxo-4H-pyrido[1,2-a]pyrazine-1-carbonitriles were obtained. The electrosynthesis is carried out in an undivided electrochemical cell under constant current conditions. The success of the discovered electrochemical synthesis is based on the combination of two anodic processes: oxidation of SCN anion to CN anion and oxidation of C-N bonds to C=N bonds during heterocycle construction. Mechanistic studies based on CV measurements, and control experiments confirm the generation of [CN] species from NH4SCN with subsequent addition to an imine formed from α-amino esters and pyridine-2-carbaldehyde. Computational analysis suggests that for reactive intermediates from glycine esters, the subsequent 5-endo-trig cyclization leading to 1-cyano-imidazo[1,5-a]pyridine-3-carboxylates is more favourable and the 6-exo-trig cyclization leading to 4-oxo-4H-pyrido[1,2-a]pyrazine-1-carbonitriles is less favourable. For α-amino esters with alkyl or aryl substituents, both cyclization pathways are relatively thermodynamically possible. The leading 4-oxo-4H-pyrido[1,2-a]pyrazine-1-carbonitrile showed high fungicidal activity against phytopathogenic fungi.
Collapse
Affiliation(s)
- Sergei S Grishin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky Prospect, Moscow, 119991, Russian Federation
- Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047, Moscow, Russian Federation
| | - Alexander O Ustyuzhanin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky Prospect, Moscow, 119991, Russian Federation
| | - Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky Prospect, Moscow, 119991, Russian Federation
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky Prospect, Moscow, 119991, Russian Federation
- Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047, Moscow, Russian Federation
| |
Collapse
|
3
|
Shan Y, Zhang X, Liu G, Li J, Liu Y, Wang J, Chen D. Cyanation with isocyanides: recent advances and perspectives. Chem Commun (Camb) 2024; 60:1546-1562. [PMID: 38240334 DOI: 10.1039/d3cc05880h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cyanation has attracted considerable attention in organic synthesis because nitriles are key structural motifs in numerous important dyes, agrochemicals, natural products and drug molecules. As the fourth generation of cyanating reagents, isocyanides occupy a prominent place in the synthesis of nitriles due to their favorable stability, easy operability and high reactivity. In recent years, three types of cyanation with isocyanides have been established: the cleavage of the C-NC bond of tertiary alkyl isocyanides (Type I), the rearrangement of aryl isocyanides with azides (Type II), and the reductive cyanation of ketones with α-acidic isocyanides (Type III). This review focuses on advances in cyanation with isocyanides with an emphasis on reaction scope, limitations and mechanisms, which could reveal their remarkable value and superiority for accessing various nitriles. In addition, the future development prospects of this specific field are also introduced. We believe that this feature article will serve as a comprehensive tool to navigate cyanation with isocyanides across the vast area of synthetic chemistry.
Collapse
Affiliation(s)
- Yingying Shan
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiuhua Zhang
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Gongle Liu
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jianming Li
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yongwei Liu
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jia Wang
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Dianpeng Chen
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
4
|
Kalantari F, Esmailipour H, Ahankar H, Ramazani A, Aghahosseini H, Kaszubowski O, Ślepokura K. SO 3H-Functionalized Epoxy-Immobilized Fe 3O 4 Core-Shell Magnetic Nanoparticles as an Efficient, Reusable, and Eco-Friendly Catalyst for the Sustainable and Green Synthesis of Pyran and Pyrrolidinone Derivatives. ACS OMEGA 2023; 8:25780-25798. [PMID: 37521605 PMCID: PMC10373207 DOI: 10.1021/acsomega.3c01068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/14/2023] [Indexed: 08/01/2023]
Abstract
A SO3H-functionalized epoxy-immobilized Fe3O4 core-shell magnetic nanocatalyst was prepared through a simple three-step procedure, and it was identified by various analyses such as Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), differential thermal gravity (DTG), Brunauer-Emmett-Teller (BET) analysis, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), vibration sample magnetometry (VSM), and powder X-ray diffraction (PXRD). BET analysis showed that the as-prepared nanocatalyst was synthesized with a mesoporous structure and high specific area (35.45 m2 g-1). The TEM image clearly showed that the particle size distribution was in the range of 47-65 nm. The designed magnetic nanocatalyst was used successfully in the synthesis of pyran derivatives via the reaction of dimedone, malononitrile, and various aromatic aldehydes and synthesis of pyrrolidinone derivatives via the reaction of various aromatic aldehydes, aniline, and diethyl acetylenedicarboxylate. The nanocatalyst was simply isolated from the reaction mixture utilizing an external magnet and reused several times according to the model reactions without significant loss in its efficiency.
Collapse
Affiliation(s)
- Fatemeh Kalantari
- Department
of Chemistry, University of Zanjan, Zanjan 45371-38791, Iran
| | | | - Hamideh Ahankar
- Department
of Chemistry, Abhar Branch, Islamic Azad
University, P.O. Box 22, Abhar 45619-33367, Iran
| | - Ali Ramazani
- Department
of Chemistry, University of Zanjan, Zanjan 45371-38791, Iran
- Department
of Biotechnology, Research Institute of Modern Biological Techniques
(RIMBT), University of Zanjan, Zanjan 45371-38791, Iran
| | | | - Oskar Kaszubowski
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie Street, 50-383 Wrocław, Poland
| | - Katarzyna Ślepokura
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie Street, 50-383 Wrocław, Poland
| |
Collapse
|
5
|
Hemmati E, Soleimani-Amiri S, Kurdtabar M. A CMC- g-poly(AA- co-AMPS)/Fe 3O 4 hydrogel nanocomposite as a novel biopolymer-based catalyst in the synthesis of 1,4-dihydropyridines. RSC Adv 2023; 13:16567-16583. [PMID: 37274398 PMCID: PMC10234149 DOI: 10.1039/d3ra01389h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023] Open
Abstract
A CMC-g-poly(AA-co-AMPS)/Fe3O4 hydrogel nanocomposite was successfully designed and prepared via graft copolymerization of AA and AMPS on CMC followed by the cross-linking addition of FeCl3/FeCl2. The synthesized hydrogel nanocomposite was characterized by Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, elemental mapping, thermogravimetric analysis/differential thermal analysis (TGA/DTA), and vibrating sample magnetometry (VSM). The CMC-g-poly(AA-co-AMPS)/Fe3O4 hydrogel nanocomposite was employed as a biocompatible catalyst for the green synthesis of 1,4-dihydropyridine (1,4-DHP) derivatives under thermal and ultrasound-assisted reaction conditions. High efficiency, low catalyst loadings, short reaction time, frequent catalyst recovery, environmental compatibility and mild conditions were found in both methods.
Collapse
Affiliation(s)
- Elmira Hemmati
- Department of Chemistry, Karaj Branch, Islamic Azad University Karaj Iran
| | | | - Mehran Kurdtabar
- Department of Chemistry, Karaj Branch, Islamic Azad University Karaj Iran
| |
Collapse
|
6
|
He WB, Tang LL, Jiang J, Li X, Xu X, Yang TB, He WM. Paired Electrolysis Enabled Cyanation of Diaryl Diselenides with KSCN Leading to Aryl Selenocyanates. Molecules 2023; 28:molecules28031397. [PMID: 36771059 PMCID: PMC9919590 DOI: 10.3390/molecules28031397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The first example of paired electrolysis-enabled cyanation of diaryl diselenides, with KSCN as the green cyanating agent, has been developed. A broad range of aryl selenocyanates can be efficiently synthesized under chemical-oxidant- and additive-free, energy-saving and mild conditions.
Collapse
Affiliation(s)
- Wei-Bao He
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Luo-Lin Tang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xiao Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xinhua Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Correspondence: (X.X.); (W.-M.H.)
| | - Tian-Bao Yang
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Correspondence: (X.X.); (W.-M.H.)
| |
Collapse
|
7
|
Fattahi B, Dekamin MG. Fe 3O 4/SiO 2 decorated trimesic acid-melamine nanocomposite: a reusable supramolecular organocatalyst for efficient multicomponent synthesis of imidazole derivatives. Sci Rep 2023; 13:401. [PMID: 36624142 PMCID: PMC9829914 DOI: 10.1038/s41598-023-27408-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
This article describes supramolecular Fe3O4/SiO2 decorated trimesic acid-melamine (Fe3O4/SiO2-TMA-Me) nanocomposite that can be prepared with features that combine properties of different materials to fabricate a structurally unique hybrid material. In particular, we have focused on design, synthesis and evaluation a heterogeneous magnetic organocatalyst containing acidic functional-groups for the synthesis of biologically important imidazole derivatives in good to excellent yields. The introduced Fe3O4/SiO2-TMA-Me nanomaterial was characterized by different techniques such as FTIR, XRD, EDX, FESEM, TEM, TGA and DTA. As a noteworthy point, the magnetic catalytic system can be recycled and reused for more than seven consecutive runs while its high catalytic activity remains under the optimized conditions.
Collapse
Affiliation(s)
- Babak Fattahi
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
8
|
Abdelazeem NM, Sroor FM, Basyouni WM, Adel I, Tantawy MA. Synthesis and Evaluation of New 3,4-Dihydropyrimidin-2-(1 H)-Ones and -Thiones as Anti-Cancer Agents: In Vitro, Molecular Docking and SAR Studies. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Nagwa M. Abdelazeem
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt
| | - Farid M. Sroor
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt
| | - Wahid M. Basyouni
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt
| | - Islam Adel
- The Egyptian Drug Authority, Cairo, Egypt
| | - Mohamed A. Tantawy
- Hormones Department, Medical Research, and Clinical Studies Institute, National Research Centre, Cairo, Egypt
- Stem Cells Laboratory, Center of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt
| |
Collapse
|
9
|
Duan Y, Liang K, Yin H, Chen FX. Dithiocyanation of Alkynes with N‐Thiocyanato‐dibenzenesulfonimide and Ammonium Thiocyanate. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yongjie Duan
- Beijing Institute of Technology School of Chemistry and Chemical Engineering No.8 liangxiang East Road, Fangshan District 102488 beijing CHINA
| | - Kun Liang
- Beijing Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Hongquan Yin
- Beijing Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Fu-Xue Chen
- Beijing Institute of Technology School of chemical Engineering No5 south zhongguancun street, Haidian 100081 Beijing CHINA
| |
Collapse
|
10
|
Imon MK, Islam R, Karmaker PG, Roy PK, Lee KI, Roy HN. A concise metal-free synthesis of xanthene derivatives mediated by achiral 2-aminophenol under solvent-free conditions. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2047730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Readul Islam
- Department of Chemistry, University of Rajshahi, Rajshahi, Bangladesh
| | - Pran G. Karmaker
- Department of Chemistry, University of Rajshahi, Rajshahi, Bangladesh
| | - Pijush K. Roy
- Department of Chemistry, University of Rajshahi, Rajshahi, Bangladesh
| | - Kee-In Lee
- Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Harendra N. Roy
- Department of Chemistry, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
11
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Lu Cheng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Key Laboratory of New Power Batteries, and Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, China.,School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huihui Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Key Laboratory of New Power Batteries, and Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, China.,School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hengrui Cai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Key Laboratory of New Power Batteries, and Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, China.,School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jie Zhang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xu Gong
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wei Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Key Laboratory of New Power Batteries, and Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing 210023, China.,School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
12
|
Amado PSM, Frija LMT, Coelho JAS, O'Neill PM, Cristiano MLS. Synthesis of Non-symmetrical Dispiro-1,2,4,5-Tetraoxanes and Dispiro-1,2,4-Trioxanes Catalyzed by Silica Sulfuric Acid. J Org Chem 2021; 86:10608-10620. [PMID: 34279102 DOI: 10.1021/acs.joc.1c01258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel protocol for the preparation of non-symmetrical 1,2,4,5-tetraoxanes and 1,2,4-trioxanes, promoted by the heterogeneous silica sulfuric acid (SSA) catalyst, is reported. Different ketones react under mild conditions with gem-dihydroperoxides or peroxysilyl alcohols/β-hydroperoxy alcohols to generate the corresponding endoperoxides in good yields. Our mechanistic proposal, assisted by molecular orbital calculations, at the ωB97XD/def2-TZVPP/PCM(DCM)//B3LYP/6-31G(d) level of theory, enhances the role of SSA in the cyclocondensation step. This novel procedure differs from previously reported methods by using readily available and inexpensive reagents, with recyclable properties, thereby establishing a valid alternative approach for the synthesis of new biologically active endoperoxides.
Collapse
Affiliation(s)
- Patrícia S M Amado
- Center of Marine Sciences (CCMAR), University of Algarve, P-8005-039 Faro, Portugal.,Department of Chemistry and Pharmacy, FCT, University of Algarve, P-8005-039 Faro, Portugal.,Department of Chemistry, University of Liverpool, L69 7ZD Liverpool, U.K
| | - Luís M T Frija
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Jaime A S Coelho
- Centro de Química Estrutural (CQE), Faculdade de Ciências, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool, L69 7ZD Liverpool, U.K
| | - Maria L S Cristiano
- Center of Marine Sciences (CCMAR), University of Algarve, P-8005-039 Faro, Portugal.,Department of Chemistry and Pharmacy, FCT, University of Algarve, P-8005-039 Faro, Portugal
| |
Collapse
|
13
|
Zhang W, Yang W, Zhao W. Lewis acid-promoted site-selective cyanation of phenols. Org Biomol Chem 2021; 18:4604-4609. [PMID: 32515758 DOI: 10.1039/d0ob00737d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An efficient Lewis acid-promoted site-selective electrophilic cyanation of 3-substituted and 3,4-disubstituted phenols has been developed. The cyanation reactions using MeSCN as the cyanating reagent proceeded efficiently to afford a wide range of 2-hydroxybenzonitriles with high efficiency and excellent regioselectivity. This protocol could provide a practical method for the synthesis and modification of biologically active molecules.
Collapse
Affiliation(s)
- Wu Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China.
| | - Wen Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China.
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China.
| |
Collapse
|
14
|
Agarwal S, Lathwal A, Nath M. Recent Advances on Cellulose Sulfuric Acid as Sustainable and Environmentally Benign Organocatalyst for Organic Transformations. CURRENT ORGANOCATALYSIS 2021. [DOI: 10.2174/2213337207999200728151811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellulose sulfuric acid has proved its competence as a potential bio-compatible, non-toxic,
and inexpensive heterogeneous solid acid catalyst in synthetic organic chemistry. Owing to its remarkable
properties, such as non-hygroscopic nature, recyclability, superior catalytic activity and high
stability, it has been actively explored as an efficient and biodegradable organocatalyst in diverse
chemical transformations of synthetic relevance. This review attempts to summarize a significant advancement
and catalytic applications of cellulose sulfuric acid for the synthesis of a plethora of biologically
relevant organic molecules.
Collapse
Affiliation(s)
- Shalini Agarwal
- Department of Chemistry, Faculty of Science, University of Delhi, Delhi-110 007, India
| | - Ankit Lathwal
- Department of Chemistry, Faculty of Science, University of Delhi, Delhi-110 007, India
| | - Mahendra Nath
- Department of Chemistry, Faculty of Science, University of Delhi, Delhi-110 007, India
| |
Collapse
|
15
|
Hornum M, Mulberg MW, Szomek M, Reinholdt P, Brewer JR, Wüstner D, Kongsted J, Nielsen P. Substituted 9-Diethylaminobenzo[ a]phenoxazin-5-ones (Nile Red Analogues): Synthesis and Photophysical Properties. J Org Chem 2021; 86:1471-1488. [PMID: 33370098 DOI: 10.1021/acs.joc.0c02346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nile Red is a benzo[a]phenoxazone dye containing a diethylamino substituent at the 9-position. In recent years, it has become a popular histological stain for cellular membranes and lipid droplets due to its unrivaled fluorescent properties in lipophilic environments. This makes it an attractive lead for chemical decoration to tweak its attributes and optimize it for more specialized microscopy techniques, e.g., fluorescence lifetime imaging or two-photon excited fluorescence microscopy, to which Nile Red has never been optimized. Herein, we present synthesis approaches to a series of monosubstituted Nile Red derivatives (9-diethylbenzo[a]phenoxazin-5-ones) starting from 1-naphthols or 1,3-naphthalenediols. The solvatochromic responsiveness of these fluorophores is reported with focus on how the substituents affect the absorption and emission spectra, luminosity, fluorescence lifetimes, and two-photon absorptivity. Several of the analogues emerge as strong candidates for reporting the polarity of their local environment. Specifically, the one- and two-photon excited fluorescence of Nile Red turns out to be very responsive to substitution, and the spectroscopic features can be finely tuned by judiciously introducing substituents of distinct electronic character at specific positions. This new toolkit of 9-diethylbenzo[a]phenoxazine-5-ones constitutes a step toward the next generation of optical molecular probes for advancing the understanding of lipid structures and cellular processes.
Collapse
|
16
|
Pramanik A, Bhar S. Silica–sulfuric acid and alumina–sulfuric acid: versatile supported Brønsted acid catalysts. NEW J CHEM 2021. [DOI: 10.1039/d1nj02887a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
–SO3H functionalized silica and alumina have emerged as efficient and eco-compatible heterogeneous solid acid catalysts for the construction of various important molecular skeletons.
Collapse
Affiliation(s)
- Amit Pramanik
- Department of Chemistry, A.B.N. Seal College, Cooch Behar, PIN-736 101, India
| | - Sanjay Bhar
- Department of Chemistry, Jadavpur University, Kolkata, PIN-700 032, India
| |
Collapse
|
17
|
Dindarloo Inaloo I, Esmaeilpour M, Majnooni S, Reza Oveisi A. Nickel‐Catalyzed Synthesis of
N
‐(Hetero)aryl Carbamates from Cyanate Salts and Phenols Activated with Cyanuric Chloride. ChemCatChem 2020. [DOI: 10.1002/cctc.202000876] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Mohsen Esmaeilpour
- Chemistry Department College of Sciences Shiraz University Shiraz 71946 84795 Iran
- Chemistry and Process Engineering Department Niroo Research Institute Tehran 1468617151 Iran
| | - Sahar Majnooni
- Chemistry Department University of Isfahan Isfahan 81746-73441 Iran
| | - Ali Reza Oveisi
- Department of Chemistry Faculty of Sciences University of Zabol Zabol 98615-538 Iran
| |
Collapse
|
18
|
Efficient nickel(II) immobilized on EDTA‐modified Fe3O4@SiO2 nanospheres as a novel nanocatalyst for amination of heteroaryl carbamates and sulfamates through the cleavage of C-O bond. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110915] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Zhang W, Yang W, Zhao W. Lewis Acid Mediated Electrophilic Cyanation of 2,2'-Biphenols. J Org Chem 2020; 85:8702-8713. [PMID: 32512992 DOI: 10.1021/acs.joc.0c00458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A Lewis acid mediated electrophilic cyanation of 2,2'-biphenols with a trifluoromethanesulfonyl (Tf) protecting group is reported. The cyanation reactions with less toxic, commercially available MeSCN as a cyanating reagent afforded a range of 3-cyan-2,2'-biphenols in moderate to high yields. The use of trifluoromethanesulfonyl (Tf) as a protecting group is crucial to the success of this transformation. Moreover, the cyanated products were readily transformed into various synthetically useful molecules. This protocol features high efficiency, excellent regioselectivity, and good functional group compatibility and may provide a practical tool for the synthesis and modification of biologically active compounds, catalysts, and ligands.
Collapse
Affiliation(s)
- Wu Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Wen Yang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
20
|
Dindarloo Inaloo I, Majnooni S, Eslahi H, Esmaeilpour M. Air‐Stable Fe
3
O
4
@SiO
2
‐EDTA‐Ni(0) as an Efficient Recyclable Magnetic Nanocatalyst for Effective Suzuki‐Miyaura and Heck Cross‐Coupling via Aryl Sulfamates and Carbamates. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Sahar Majnooni
- Department of Chemistry University of Isfahan Isfahan 81746‐73441 Iran
| | - Hassan Eslahi
- Chemistry Department, College of Sciences Shiraz University Shiraz Iran
| | | |
Collapse
|
21
|
Dindarloo Inaloo I, Majnooni S, Eslahi H, Esmaeilpour M. Nickel(II) Nanoparticles Immobilized on EDTA-Modified Fe 3O 4@SiO 2 Nanospheres as Efficient and Recyclable Catalysts for Ligand-Free Suzuki-Miyaura Coupling of Aryl Carbamates and Sulfamates. ACS OMEGA 2020; 5:7406-7417. [PMID: 32280882 PMCID: PMC7144170 DOI: 10.1021/acsomega.9b04450] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/16/2020] [Indexed: 05/09/2023]
Abstract
A highly efficient and air-, thermal-, and moisture-stable nickel-based catalyst with excellent magnetic properties supported on silica-coated magnetic Fe3O4 nanoparticles was successfully synthesized. It was well characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, thermogravimetric analysis, dynamic light scattering (DLS), X-ray photoelectron spectroscopy, vibration sample magnetometry, energy-dispersive X-ray analysis, inductively coupled plasma analysis, and nitrogen adsorption-desorption isotherm analysis. The Suzuki-Miyaura coupling reaction between aryl carbamates and/or sulfamates with arylboronic acids was selected to demonstrate the catalytic activity and efficiency of the as-prepared magnetic nanocatalyst. Using the mentioned heterogeneous nanocatalyst in such reactions generated corresponding products in good to excellent yields in which the catalyst could easily be recovered from the reaction mixture with an external magnetic field to reuse directly for the next several cycles without significant loss of its activity.
Collapse
Affiliation(s)
- Iman Dindarloo Inaloo
- Chemistry
Department, College of Sciences, Shiraz
University, Shiraz 71946 84795, Iran
| | - Sahar Majnooni
- Department
of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Hassan Eslahi
- Chemistry
Department, College of Sciences, Shiraz
University, Shiraz 71946 84795, Iran
| | - Mohsen Esmaeilpour
- Chemistry
Department, College of Sciences, Shiraz
University, Shiraz 71946 84795, Iran
| |
Collapse
|
22
|
Niknam E, Panahi F, Khalafi-Nezhad A. Palladium-Catalyzed Cyanation of Aryl Halides Using Formamide and Cyanuric Chloride as a New “CN” Source. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Esmaeil Niknam
- Department of Chemistry; College of Sciences; Shiraz University; 71454 Shiraz Iran
| | - Farhad Panahi
- Department of Chemistry; College of Sciences; Shiraz University; 71454 Shiraz Iran
| | - Ali Khalafi-Nezhad
- Department of Chemistry; College of Sciences; Shiraz University; 71454 Shiraz Iran
| |
Collapse
|
23
|
Dindarloo Inaloo I, Majnooni S, Eslahi H, Esmaeilpour M. N-Arylation of (hetero)arylamines using aryl sulfamates and carbamates via C–O bond activation enabled by a reusable and durable nickel(0) catalyst. NEW J CHEM 2020. [DOI: 10.1039/d0nj01610a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An effective and general aryl amination protocol has been developed using a magnetically recoverable Ni(0) based nanocatalyst.
Collapse
Affiliation(s)
| | - Sahar Majnooni
- Department of Chemistry
- University of Isfahan
- Isfahan 81746-73441
- Iran
| | - Hassan Eslahi
- Chemistry Department
- College of Sciences
- Shiraz University
- Shiraz 71946 84795
- Iran
| | - Mohsen Esmaeilpour
- Chemistry Department
- College of Sciences
- Shiraz University
- Shiraz 71946 84795
- Iran
| |
Collapse
|
24
|
Yu YZ, Guo YH, Zhang YR, Tian XJ, Zhang XM. Tetrahedral μ 4-chloride and in situ generated octahedral μ 6-sulfide templating Co 8 complexes with different distortions of the cube. Chem Commun (Camb) 2020; 56:4236-4239. [PMID: 32182322 DOI: 10.1039/d0cc01320j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein two unprecedented octanuclear Co8 clusters are presented, [Cl@Co8 (TEOA)4(CH3CN)Cl3] (1) and [S@Co8(DEOA)6(NCS)2] (2) (H3TEOA = triethanolamine, H2DEOA = diethanolamine), in which tetrahedral μ4-chloride and in situ generated octahedral μ6-sulfide are used as templates. In spite of them being derivatives of cubes, eight Co atoms in 1 consist of two co-centered tetrahedra of different sizes, whereas in 2 they appear as a rhombohedron formed via elongating a cube along the C3-axis direction. Strong intra-cluster antiferromagnetic interactions were found.
Collapse
Affiliation(s)
- You-Zhu Yu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials, Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Linfen 041004, P. R. China. and School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, P. R. China
| | - Yu-Hua Guo
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, P. R. China
| | - Yan-Ru Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials, Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Linfen 041004, P. R. China.
| | - Xiu-Juan Tian
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials, Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Linfen 041004, P. R. China.
| | - Xian-Ming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials, Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Linfen 041004, P. R. China.
| |
Collapse
|
25
|
Inaloo ID, Majnooni S. A Fe3
O4
@SiO2
/Schiff Base/Pd Complex as an Efficient Heterogeneous and Recyclable Nanocatalyst for One-Pot Domino Synthesis of Carbamates and Unsymmetrical Ureas. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901140] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Iman Dindarloo Inaloo
- Chemistry Department; College of Sciences; Shiraz University; 84795 71946 Shiraz Iran
| | - Sahar Majnooni
- Chemistry Department; College of Sciences; University of Isfahan; 81746-73441 Isfahan Iran
| |
Collapse
|
26
|
Yi B, Yan N, Yi N, Xie Y, Wen X, Au CT, Lan D. Oxidative cyanation of N-aryltetrahydroisoquinoline induced by visible light for the synthesis of α-aminonitrile using potassium thiocyanate as a “CN” agent. RSC Adv 2019; 9:29721-29725. [PMID: 35531501 PMCID: PMC9071963 DOI: 10.1039/c9ra06120g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/12/2019] [Indexed: 11/21/2022] Open
Abstract
A novel method for the synthesis of α-aminonitrile, through visible-light-induced oxidative cyanation of N-aryltetrahydroisoquinoline with potassium thiocyanate, has been developed.
Collapse
Affiliation(s)
- Bing Yi
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Rechemistry
- College of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan
- P. R. China
| | - Ning Yan
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Rechemistry
- College of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan
- P. R. China
| | - Niannian Yi
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Rechemistry
- College of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan
- P. R. China
| | - Yanjun Xie
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Rechemistry
- College of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan
- P. R. China
| | - Xiaoyong Wen
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Rechemistry
- College of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan
- P. R. China
| | - Chak-Tong Au
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Rechemistry
- College of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan
- P. R. China
| | - Donghui Lan
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Rechemistry
- College of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan
- P. R. China
| |
Collapse
|
27
|
Yu JX, Niu S, Hu M, Xiang JN, Li JH. Metal-free oxidative [2+2+1] heteroannulation of 1,7-enynes with thiocyanates toward thieno[3,4-c]quinolin-4(5H)-ones. Chem Commun (Camb) 2019; 55:6727-6730. [PMID: 31119230 DOI: 10.1039/c9cc02242b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new metal-free oxidative [2+2+1] heteroannulation of 1,7-enynes with thiocyanates for producing thieno[3,4-c]quinolin-4(5H)-ones is presented. This reaction employs benzoylperoxide (BPO) as the oxidant and sodium thiocyanate as the sulfur source to enable the formation of three chemical bonds, two C-S bonds and one C-C bond, in a single reaction, and represents a new, practical access to S-heterocycles with the avoidance of the use of metal catalysts and excess bases.
Collapse
Affiliation(s)
- Jiang-Xi Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.
| | | | | | | | | |
Collapse
|