1
|
Mattiello S, Ghiglietti E, Zucchi A, Beverina L. Selectivity in micellar catalysed reactions. The role of interfacial dipole, compartmentalisation, and specific interactions with the surfactants. Curr Opin Colloid Interface Sci 2023. [DOI: 10.1016/j.cocis.2023.101681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
2
|
A Sustainable Synthetic Approach to the Indaceno[1,2-b:5,6-b′]dithiophene (IDT) Core through Cascade Cyclization–Deprotection Reactions. CHEMISTRY 2022. [DOI: 10.3390/chemistry4010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bulk heterojunction organic solar cells (BHJs) are competitive within the emerging photovoltaic technologies for solar energy conversion because of their unique advantages. Their development has been boosted recently by the introduction of nonfullerene electron acceptors (NFAs), to be used in combination with a polymeric electron donor in the active layer composition. Many of the recent advances in NFAs are attributable to the class of fused-ring electron acceptors (FREAs), which is now predominant, with one of the most notable examples being formed with a fused five-member-ring indaceno[1,2-b:5,6-b′]dithiophene (IDT) core. Here, we propose a novel and more sustainable synthesis for the IDT core. Our approach bypasses tin derivatives needed in the Stille condensation, whose byproducts are toxic and difficult to dispose of, and it makes use of cascade reactions, effectively reducing the number of synthetic steps.
Collapse
|
3
|
A Rosin-Based Surfactant Enabling Cross-Couplings of Vinyl Dibromides with Sulfonamides in Water. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Ceriani C, Pallini F, Mezzomo L, Sassi M, Mattiello S, Beverina L. Micellar catalysis beyond the hydrophobic effect: Efficient palladium catalyzed Suzuki-Miyaura coupling of water and organic solvent insoluble pigments with food grade surfactants. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Jordan A, Hall CGJ, Thorp LR, Sneddon HF. Replacement of Less-Preferred Dipolar Aprotic and Ethereal Solvents in Synthetic Organic Chemistry with More Sustainable Alternatives. Chem Rev 2022; 122:6749-6794. [PMID: 35201751 PMCID: PMC9098182 DOI: 10.1021/acs.chemrev.1c00672] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dipolar aprotic and ethereal solvents comprise just over 40% of all organic solvents utilized in synthetic organic, medicinal, and process chemistry. Unfortunately, many of the common "go-to" solvents are considered to be "less-preferable" for a number of environmental, health, and safety (EHS) reasons such as toxicity, mutagenicity, carcinogenicity, or for practical handling reasons such as flammability and volatility. Recent legislative changes have initiated the implementation of restrictions on the use of many of the commonly employed dipolar aprotic solvents such as dimethylformamide (DMF) and N-methyl-2-pyrrolidinone (NMP), and for ethers such as 1,4-dioxane. Thus, with growing legislative, EHS, and societal pressures, the need to identify and implement the use of alternative solvents that are greener, safer, and more sustainable has never been greater. Within this review, the ubiquitous nature of dipolar aprotic and ethereal solvents is discussed with respect to the physicochemical properties that have made them so appealing to synthetic chemists. An overview of the current legislative restrictions being imposed on the use of dipolar aprotic and ethereal solvents is discussed. A variety of alternative, safer, and more sustainable solvents that have garnered attention over the past decade are then examined, and case studies and examples where less-preferable solvents have been successfully replaced with a safer and more sustainable alternative are highlighted. Finally, a general overview and guidance for solvent selection and replacement are included in the Supporting Information of this review.
Collapse
Affiliation(s)
- Andrew Jordan
- School of Chemistry, University of Nottingham, GlaxoSmithKline Carbon Neutral Laboratory, 6 Triumph Road, Nottingham, NG7 2GA, U.K
| | - Callum G J Hall
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow, Scotland G1 1XL, U.K.,GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Lee R Thorp
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Helen F Sneddon
- Green Chemistry Centre of Excellence, University of York, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
6
|
Pallini F, Sangalli E, Sassi M, Roth PMC, Mattiello S, Beverina L. Selective photoredox direct arylations of aryl bromides in water in a microfluidic reactor. Org Biomol Chem 2021; 19:3016-3023. [PMID: 33885555 DOI: 10.1039/d1ob00050k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Carrying out photoredox direct arylation couplings between aryl halides and aryls in aqueous solutions of surfactants enables unprecedented selectivity with respect to the competing dehalogenation process, thanks to the partition coefficient of the selected sacrificial base. The use of a microfluidic reactor dramatically improves the reaction time, without eroding the yields and selectivity. The design of a metal free sensitizer, which also acts as the surfactant, sizeably improves the overall sustainability of arylation reactions and obviates the need for troublesome purification from traces of metal catalysts. The generality of the method is investigated over a range of halides carrying a selection of electron withdrawing and electron donating substituents.
Collapse
Affiliation(s)
- Francesca Pallini
- University of Milano-Bicocca, Department of Materials Science, via R. Cozzi 55, I-20125 Milan, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Ye L, Hooshmand T, Thompson BC. “In-water” direct arylation polymerization (DArP) under aerobic emulsion conditions. Polym Chem 2021. [DOI: 10.1039/d1py01321a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To address the issue of generating large amounts of organic waste from conjugated polymer synthesis, the first direct arylation polymerization (DArP) protocol under emulsion conditions is disclosed with a 10-fold reduction of organic solvent utilized.
Collapse
Affiliation(s)
- Liwei Ye
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, USA
| | - Tanin Hooshmand
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, USA
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, USA
| |
Collapse
|
8
|
Shen T, Zhou S, Ruan J, Chen X, Liu X, Ge X, Qian C. Recent advances on micellar catalysis in water. Adv Colloid Interface Sci 2021; 287:102299. [PMID: 33321331 DOI: 10.1016/j.cis.2020.102299] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 01/29/2023]
Abstract
Water is the universal solvent in nature to catalyze the biological transformation processes. However, owing to the immiscibility of many reagents in water, synthesis chemistry relies heavily on organic solvent. Micellar media is a green alternative to traditional petroleum feedstock derived solvents, which is recently attracting increasing research attention. The present review deals with the recent advances in micellar catalysis with an emphasis on the new "tailor-made" surfactants for various reactions. A brief overview of commercial surfactants, including anionic micelles, cationic micelles, and nonionic micelles is presented. More importantly, an attempt was made to discuss systematically the recent research progress on new surfactants by introducing structures, micellar effects and recycling process, aiming to serve as the basis for future development of surfactants.
Collapse
|
9
|
Zhang Y, Song J, Qu J, Qian PC, Wong WY. Recent progress of electronic materials based on 2,1,3-benzothiadiazole and its derivatives: synthesis and their application in organic light-emitting diodes. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9901-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Rahmanudin A, Marcial‐Hernandez R, Zamhuri A, Walton AS, Tate DJ, Khan RU, Aphichatpanichakul S, Foster AB, Broll S, Turner ML. Organic Semiconductors Processed from Synthesis-to-Device in Water. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002010. [PMID: 33173736 PMCID: PMC7610335 DOI: 10.1002/advs.202002010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Organic semiconductors (OSCs) promise to deliver next-generation electronic and energy devices that are flexible, scalable and printable. Unfortunately, realizing this opportunity is hampered by increasing concerns about the use of volatile organic compounds (VOCs), particularly toxic halogenated solvents that are detrimental to the environment and human health. Here, a cradle-to-grave process is reported to achieve high performance p- and n-type OSC devices based on indacenodithiophene and diketopyrrolopyrrole semiconducting polymers that utilizes aqueous-processes, fewer steps, lower reaction temperatures, a significant reduction in VOCs (>99%) and avoids all halogenated solvents. The process involves an aqueous mini-emulsion polymerization that generates a surfactant-stabilized aqueous dispersion of OSC nanoparticles at sufficient concentration to permit direct aqueous processing into thin films for use in organic field-effect transistors. Promisingly, the performance of these devices is comparable to those prepared using conventional synthesis and processing procedures optimized for large amounts of VOCs and halogenated solvents. Ultimately, the holistic approach reported addresses the environmental issues and enables a viable guideline for the delivery of future OSC devices using only aqueous media for synthesis, purification and thin-film processing.
Collapse
Affiliation(s)
- Aiman Rahmanudin
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Raymundo Marcial‐Hernandez
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Adibah Zamhuri
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Alex S. Walton
- Photon Science Institute and the Department of ChemistryAlan Turing BuildingUniversity of ManchesterOxford RoadManchesterM13 9PYUK
| | - Daniel J. Tate
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Raja U. Khan
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Suphaluk Aphichatpanichakul
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Andrew B. Foster
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Sebastian Broll
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Michael L. Turner
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
11
|
Sanzone A, Calascibetta A, Monti M, Mattiello S, Sassi M, Corsini F, Griffini G, Sommer M, Beverina L. Synthesis of Conjugated Polymers by Sustainable Suzuki Polycondensation in Water and under Aerobic Conditions. ACS Macro Lett 2020; 9:1167-1171. [PMID: 35653208 DOI: 10.1021/acsmacrolett.0c00495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Conjugated semiconducting polymers are key materials enabling plastic (opto)electronic devices. Research in the field has a generally strong focus on the constant improvement of backbone structure and the resulting properties. Comparatively fewer studies are devoted to improving the sustainability of the synthetic route that leads to a material under scrutiny. Exemplified by the two established and commercially available luminescent polymers poly(9,9-dioctylfluorene-alt-bithiophene) (PF8T2) and poly(9,9-dioctylfluorene-alt-benzothiadiazole) (PF8BT), this work describes the first examples of efficient Suzuki-Miyaura polycondensations in water, under ambient environment, with minimal amount of organic solvent and with moderate heating. The synthetic approach enables a reduction of the E-factor (mass of organic waste/mass of product) by 1 order of magnitude, without negatively affecting molecular weight, dispersity, chemical structure, or photochemical stability of PF8T2 or PF8BT.
Collapse
Affiliation(s)
- Alessandro Sanzone
- Department of Materials Science and INSTM, University of Milano-Bicocca, Via R. Cozzi, 55, 20125 Milano, Italy
| | - Adiel Calascibetta
- Department of Materials Science and INSTM, University of Milano-Bicocca, Via R. Cozzi, 55, 20125 Milano, Italy
| | - Mauro Monti
- Department of Materials Science and INSTM, University of Milano-Bicocca, Via R. Cozzi, 55, 20125 Milano, Italy
| | - Sara Mattiello
- Department of Materials Science and INSTM, University of Milano-Bicocca, Via R. Cozzi, 55, 20125 Milano, Italy
| | - Mauro Sassi
- Department of Materials Science and INSTM, University of Milano-Bicocca, Via R. Cozzi, 55, 20125 Milano, Italy
| | - Francesca Corsini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Gianmarco Griffini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Michael Sommer
- Institute for Chemistry, Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Luca Beverina
- Department of Materials Science and INSTM, University of Milano-Bicocca, Via R. Cozzi, 55, 20125 Milano, Italy
| |
Collapse
|
12
|
Calascibetta AM, Mattiello S, Sanzone A, Facchinetti I, Sassi M, Beverina L. Sustainable Access to π-Conjugated Molecular Materials via Direct (Hetero)Arylation Reactions in Water and under Air. Molecules 2020; 25:E3717. [PMID: 32824058 PMCID: PMC7465621 DOI: 10.3390/molecules25163717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Direct (hetero)arylation (DHA) is playing a key role in improving the efficiency and atom economy of C-C cross coupling reactions, so has impacts in pharmaceutical and materials chemistry. Current research focuses on further improving the generality, efficiency and selectivity of the method through careful tuning of the reaction conditions and the catalytic system. Comparatively fewer studies are dedicated to the replacement of the high-boiling-point organic solvents dominating the field and affecting the overall sustainability of the method. We show herein that the use of a 9:1 v/v emulsion of an aqueous Kolliphor 2 wt% solution while having toluene as the reaction medium enables the preparation of relevant examples of thiophene-containing π-conjugated building blocks in high yield and purity.
Collapse
Affiliation(s)
- Adiel Mauro Calascibetta
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi, 55, I-20125 Milano, Italy; (A.M.C.); (A.S.); (I.F.)
| | - Sara Mattiello
- Department of Materials Science, University of Milano-Bicocca and INSTM, Via R. Cozzi, 55, I-20125 Milano, Italy; (S.M.); (M.S.)
| | - Alessandro Sanzone
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi, 55, I-20125 Milano, Italy; (A.M.C.); (A.S.); (I.F.)
| | - Irene Facchinetti
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi, 55, I-20125 Milano, Italy; (A.M.C.); (A.S.); (I.F.)
| | - Mauro Sassi
- Department of Materials Science, University of Milano-Bicocca and INSTM, Via R. Cozzi, 55, I-20125 Milano, Italy; (S.M.); (M.S.)
| | - Luca Beverina
- Department of Materials Science, University of Milano-Bicocca and INSTM, Via R. Cozzi, 55, I-20125 Milano, Italy; (S.M.); (M.S.)
| |
Collapse
|
13
|
Sassi M, Mattiello S, Beverina L. Syntheses of Organic Semiconductors in Water. Recent Advancement in the Surfactants Enhanced Green Access to Polyconjugated Molecules. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mauro Sassi
- Department of Materials Science and INSTM; University of Milano-Bicocca; Via R. Cozzi 55 20125 Milano Italy
| | - Sara Mattiello
- Department of Materials Science and INSTM; University of Milano-Bicocca; Via R. Cozzi 55 20125 Milano Italy
| | - Luca Beverina
- Department of Materials Science and INSTM; University of Milano-Bicocca; Via R. Cozzi 55 20125 Milano Italy
| |
Collapse
|
14
|
Zhang F, Yuan B, Xu J, Huang H, Li L. The structural properties of silicon-doped DBrTBT/ZnSe solar cell materials: a theoretical study. NEW J CHEM 2020. [DOI: 10.1039/d0nj02813d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new molecular design for solar cell materials is reported for the silicon-doped 4,7-di(5-bromothiophen-2-yl)-2,1,3-benzothiadiazole adsorbed on ZnSe(100) and ZnSe(111) surfaces.
Collapse
Affiliation(s)
- Fulan Zhang
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Fuling 408100
- China
| | - Binfang Yuan
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Fuling 408100
- China
| | - Jianhua Xu
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Fuling 408100
- China
| | - Huisheng Huang
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Fuling 408100
- China
| | - Laicai Li
- College of Chemistry and Material Science
- Sichuan Normal University
- Chengdu 610066
- China
| |
Collapse
|
15
|
Ledwon P, Wiosna-Salyga G, Chapran M, Motyka R. The Effect of Acceptor Structure on Emission Color Tuning in Organic Semiconductors with D-π-A-π-D Structures. NANOMATERIALS 2019; 9:nano9081179. [PMID: 31426483 PMCID: PMC6724117 DOI: 10.3390/nano9081179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/07/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022]
Abstract
A series of novel donor-acceptor D-π-A-π-D compounds were synthesized and characterized in order to determine the influence of different acceptor units on their properties. The introduction of acceptor moieties had a direct impact on the HOMO and LUMO energy levels. Fluorescence spectra of compounds can be changed by the choice of an appropriate acceptor and were shifted from the green to the near-infrared part of spectra. Due to observed concentration induced emission quenching, the green exciplex type host was used to evaluate the potential of synthesized molecules as emitters in organic light emitting diodes (OLEDs).
Collapse
Affiliation(s)
- Przemyslaw Ledwon
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland.
| | - Gabriela Wiosna-Salyga
- Department of Molecular Physics, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Marian Chapran
- Department of Molecular Physics, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Radoslaw Motyka
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| |
Collapse
|
16
|
Lee NR, Cortes-Clerget M, Wood AB, Lippincott DJ, Pang H, Moghadam FA, Gallou F, Lipshutz BH. Coolade. A Low-Foaming Surfactant for Organic Synthesis in Water. CHEMSUSCHEM 2019; 12:3159-3165. [PMID: 30889298 DOI: 10.1002/cssc.201900369] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Several types of reduction reactions in organic synthesis are performed under aqueous micellar-catalysis conditions (in water at ambient temperature), which produce a significant volume of foam owing to the combination of the surfactant and the presence of gas evolution. The newly engineered surfactant "Coolade" minimizes this important technical issue owing to its low-foaming properties. Coolade is the latest in a series of designer surfactants specifically tailored to enable organic synthesis in water. This study reports the synthesis of this new surfactant along with its applications to gas-involving reactions.
Collapse
Affiliation(s)
- Nicholas R Lee
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Margery Cortes-Clerget
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Alex B Wood
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Daniel J Lippincott
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Haobo Pang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Farbod A Moghadam
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | | | - Bruce H Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|