1
|
Rao WH, Gao C, Jiang LL, Ma XX, Xu JR, Li J, Dong XW, Li YW, Zou GD. Aerobic Copper-Catalyzed Hydroxysulfonylation of Vinylarenes with Sodium Sulfinates. J Org Chem 2025; 90:1489-1500. [PMID: 39844475 DOI: 10.1021/acs.joc.4c02263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
A novel and efficient method for the intermolecular hydroxysulfonylation of vinylarenes using sodium sulfinates has been achieved through aerobic copper catalysis. This transformation proceeded smoothly with green air as the terminal oxidant in the presence of Cu (I)/1,10-phenanthroline as an efficient catalytic system, leading to an array of β-hydroxysulfones in moderate to high yields. The significant advantages of this protocol are the mild reaction conditions, readily available starting materials, good functional-group compatibility, synthetic convenience, and practicability. Preliminary mechanistic investigation suggested that the catalytic process should undergo a cascade of radical events involving the initial generation of sulfonyl radical followed by sulfonyl radical addition across alkenes and subsequent cross-coupling with air.
Collapse
Affiliation(s)
- Wei-Hao Rao
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang 464000, China
| | - Chang Gao
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang 464000, China
| | - Li-Li Jiang
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang 464000, China
| | - Xue-Xiang Ma
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang 464000, China
| | - Jin-Rui Xu
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang 464000, China
| | - Jia Li
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang 464000, China
| | - Xiao-Wen Dong
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang 464000, China
| | - Yi-Wen Li
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang 464000, China
| | - Guo-Dong Zou
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
2
|
Rao WH, Gao C, Jiang LL, Zhou FY, Liu JF, Zou GD. Aerobic Copper-Catalyzed Oxysulfonylation of Vinylarenes with Sodium Sulfinates under Mild Conditions: A Modular Synthesis of β-Ketosulfones. J Org Chem 2024; 89:12681-12692. [PMID: 39167724 DOI: 10.1021/acs.joc.4c01660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
An aerobic copper-catalyzed oxysulfonylation of vinylarenes with sodium sulfinates is described. This protocol features mild reaction conditions, convenient operation, and broad substrate scope with respect to vinylarenes and sodium sulfinates. Notably, the protocol demonstrates excellent tolerance of functional groups such as chloro, bromo, ester, cyano, and nitro groups. Mechanistic investigations indicated that the reaction should undergo radical cascades involving a sulfonyl radical generated from sodium sulfinate with air as the terminal oxidant, addition across alkene to deliver a benzylic radical, and subsequent cross-coupling with air.
Collapse
Affiliation(s)
- Wei-Hao Rao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Chang Gao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Li-Li Jiang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Fu-Yu Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Jia-Fan Liu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Guo-Dong Zou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
3
|
Jiang S, Liang M, Bai J, Yang R, Chen X, Huang H, Ding HX, Luo MJ, Song XR, Xiao Q. TFA-Promoted Cascade Sulfonylation/Rearrangement/Cyclization of 1,5-Diynols and Sodium Sulfinates to Construct Sulfonylated Benzo[ b]fluorenes. J Org Chem 2024; 89:6416-6427. [PMID: 38616352 DOI: 10.1021/acs.joc.4c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
A novel conversion of 1,5-diynols into sulfonylated benzo[b]fluorenes is reported by a TFA-promoted cascade cyclization with sodium sulfinates under mild conditions. This strategy provides an efficient and practical approach for accessing various sulfonated benzo[b]fluorenes in moderate to excellent yields under metal-free conditions. On the basis of the control experimental results and density functional theory calculations, a possible cascade transformation mechanism consisting of the dehydration of propargylic alcohols, sulfonylation, allenylation, and Schmittel-type cyclization is proposed. It is worth noting that TFA played an important role in this cascade cyclization, which promoted C-SO2R bond cleavage in a propargylic sulfone intermediate to form allenyl sulfones, followed by Schmittel-type cyclization to give the target product.
Collapse
Affiliation(s)
- Shimin Jiang
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, Jiangxi 330013, China
| | - Meng Liang
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, Jiangxi 330013, China
| | - Jiang Bai
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, Jiangxi 330013, China
| | - Ruchun Yang
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, Jiangxi 330013, China
| | - Xi Chen
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, Jiangxi 330013, China
| | - Haiyang Huang
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, Jiangxi 330013, China
| | - Hai-Xin Ding
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, Jiangxi 330013, China
| | - Mu-Jia Luo
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, Jiangxi 330013, China
| | - Xian-Rong Song
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, Jiangxi 330013, China
| | - Qiang Xiao
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, Jiangxi 330013, China
| |
Collapse
|
4
|
Zhang XX, Zheng H, Mei YK, Liu Y, Liu YY, Ji DW, Wan B, Chen QA. Photo-induced imino functionalizations of alkenes via intermolecular charge transfer. Chem Sci 2023; 14:11170-11179. [PMID: 37860665 PMCID: PMC10583702 DOI: 10.1039/d3sc03667g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023] Open
Abstract
A catalyst-free photosensitized strategy has been developed for regioselective imino functionalizations of alkenes via the formation of an EDA complex. This photo-induced protocol facilitates the construction of structurally diverse β-imino sulfones and vinyl sulfones in moderate to high yields. Mechanistic studies reveal that the reaction is initiated with an intermolecular charge transfer between oximes and sulfinates, followed by fragmentation to generate a persistent iminyl radical and transient sulfonyl radical. This catalyst-free protocol also features excellent regioselectivity, broad functional group tolerance and mild reaction conditions. The late stage functionalization of natural product derived compounds and total synthesis of some bioactive molecules have been demonstrated to highlight the utility of this protocol. Meanwhile, the compatibility of different donors has proved the generality of this strategy.
Collapse
Affiliation(s)
- Xiang-Xin Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China http://www.lbcs.dicp.ac.cn
| | - Hao Zheng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China http://www.lbcs.dicp.ac.cn
| | - Yong-Kang Mei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China http://www.lbcs.dicp.ac.cn
| | - Yan Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China http://www.lbcs.dicp.ac.cn
| | - Ying-Ying Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China http://www.lbcs.dicp.ac.cn
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 People's Republic of China
| | - Boshun Wan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 People's Republic of China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China http://www.lbcs.dicp.ac.cn
| |
Collapse
|
5
|
Ding R, Li L, Yu YT, Zhang B, Wang PL. Photoredox-Catalyzed Synthesis of 3-Sulfonylated Pyrrolin-2-ones via a Regioselective Tandem Sulfonylation Cyclization of 1,5-Dienes. Molecules 2023; 28:5473. [PMID: 37513345 PMCID: PMC10386375 DOI: 10.3390/molecules28145473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
A mild, visible-light-induced, regioselective cascade sulfonylation-cyclization of 1,5-dienes with sulfonyl chlorides through the intermolecular radical addition/cyclization of alkenes C(sp2)-H was developed. This procedure proceeds well and affords a mild and efficient route to a range of monosulfonylated pyrrolin-2-ones at room temperatures.
Collapse
Affiliation(s)
- Ran Ding
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, China
| | - Liang Li
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, China
| | - Ya-Ting Yu
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, China
| | - Bing Zhang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, China
| | - Pei-Long Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
- Information College, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
6
|
Beng TK, Eichwald J, Fessenden J, Quigley K, Sharaf S, Jeon N, Do M. Regiodivergent synthesis of sulfone-tethered lactam-lactones bearing four contiguous stereocenters. RSC Adv 2023; 13:21250-21258. [PMID: 37456540 PMCID: PMC10340014 DOI: 10.1039/d3ra03800a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Sulfone-tethered lactones/amides/amines display a diverse spectrum of biological activities, including anti-psychotic and anti-hypertensive. Sulfones are also widely present in functional materials and fragrances. We therefore reasoned that a regiodivergent and stereocontrolled strategy that merges the sulfone, lactone, and lactam motifs would likely lead to the discovery of new pharmacophores and functional materials. Here, we report mild conditions for the sulfonyllactonization of γ-lactam-tethered 5-aryl-4(E)-pentenoic acids. The annulation is highly modular, chemoselective, and diastereoselective. With respect to regioselectivity, trisubstituted alkenoic acids display a preference for 5-exo-trig cyclization whereas disubstituted alkenoic acids undergo exclusive 6-endo-trig cyclization. The lactam-fused sulfonyllactones bear angular quaternary as well as four contiguous stereocenters. The products are post-modifiable, especially through a newly developed Co-catalyzed reductive cross-coupling protocol.
Collapse
Affiliation(s)
- Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jane Eichwald
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jolyn Fessenden
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Kaiden Quigley
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Sapna Sharaf
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Nanju Jeon
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Minh Do
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
7
|
Dong H, Chen C, Zhao J, Ji Y, Yang W. Photoinduced Photocatalyst-Free Cascade Cyclization of Alkynes with Sodium Sulfinates for the Synthesis of Benzothiophenes and Thioflavones. Molecules 2023; 28:molecules28114436. [PMID: 37298913 DOI: 10.3390/molecules28114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The subject of this investigation is a new method for the construction of sulfonylated heterocycles which overcomes the limitations of classical approaches using a cheap feedstock sulfonylating agent, especially under photocatalyst- and metal-free conditions.
Collapse
Affiliation(s)
- Hongqiang Dong
- The Open Research Fund of the National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in South Xinjiang, College of Agriculture, Tarim University, Alaer 843300, China
| | - Chunli Chen
- The Open Research Fund of the National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in South Xinjiang, College of Agriculture, Tarim University, Alaer 843300, China
| | - Jinlei Zhao
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Surveying and Design Institute of Water Resources Co., Ltd., Yangzhou 225127, China
| | - Yigang Ji
- Jiangsu Key Laboratory of Biofuctional Molecules, Department of Life Sciences and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Wenchao Yang
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Luo XL, Li SS, Jiang YS, Liu F, Li SH, Xia PJ. Photocatalytic 1,2-Iminosulfonylation and Remote 1,6-Iminosulfonylation of Olefins. Org Lett 2023; 25:1742-1747. [PMID: 36883883 DOI: 10.1021/acs.orglett.3c00437] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
A new class of iminosulfonylation reagents were developed and extensively used in the 1,2-iminosulfonylation of various olefins. Olefins containing bioactive molecules, such as indomethacin, gemfibrozil, clofibrate, and fenbufen, afforded the desired iminosulfonylation products in synthetically useful yields. Furthermore, the first remote 1,6-iminosulfonylation of alkenes was realized by using oxime ester bifunctionalization reagents. Overall, more than 40 structurally diverse β-imine sulfones were obtained in moderate to excellent yields.
Collapse
Affiliation(s)
- Xue-Ling Luo
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shan-Shan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Yu-Shi Jiang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fu Liu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shu-Hui Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Peng-Ju Xia
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
9
|
Bhosale VA, Císařová I, Kamlar M, Veselý J. Catalytic asymmetric addition to cyclic N-acyl-iminium: access to sulfone-bearing contiguous quaternary stereocenters. Chem Commun (Camb) 2022; 58:9942-9945. [PMID: 35983733 DOI: 10.1039/d2cc02667h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the first chiral phosphoric acid (CPA)-catalyzed asymmetric addition of α-fluoro(phenylsulfonyl)methane (FSM) derivatives to in situ generated cyclic N-acyliminium. This process enables metal-free expeditious access to sulfone and fluorine incorporating contiguous all substituted quaternary stereocenters ingrained in biorelevant isoindolinones in excellent stereoselectivities (up to 99% ee and up to 50 : 1 dr).
Collapse
Affiliation(s)
- Viraj A Bhosale
- Department of Organic Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic.
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Martin Kamlar
- Department of Organic Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic.
| | - Jan Veselý
- Department of Organic Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic.
| |
Collapse
|
10
|
Mou XQ, Ren LC, Zhang M, Wang M, Jin YF, Guan QX, Cai A, Zhang SM, Ren H, Zhang Y, Chen YZ. Complementary Copper-Catalyzed and Electrochemical Aminosulfonylation of O-Homoallyl Benzimidates and N-Alkenyl Amidines with Sodium Sulfinates. Org Lett 2022; 24:1405-1411. [PMID: 35138858 DOI: 10.1021/acs.orglett.2c00287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A complementary copper-catalyzed and electrochemical aminosulfonylation of O-homoallyl benzimidates and N-alkenyl amidines with sodium sulfinates was developed. The terminal alkene substrate produced sulfone-containing 1,3-oxazines and tetrahydropyrimidines in the presence of Cu(OAc)2, Ag2CO3, and DPP, and under similar reaction conditions, sulfonylated tetrahydro-1,3-oxazepines were prepared from 1-aryl-substituted O-homoallyl benzimidates in moderate to good yields. For certain electron-rich 1,1-diaryl-substituted alkene substrates, the corresponding tetrahydro-1,3-oxazepines could also be obtained in similar or even higher yields via a green electrochemical technique.
Collapse
Affiliation(s)
- Xue-Qing Mou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Liang-Chen Ren
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Mei Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Min Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Yu-Fan Jin
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Qing-Xin Guan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Ang Cai
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Shi-Min Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Yun Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| |
Collapse
|
11
|
Liang S, Hofman K, Friedrich M, Keller J, Manolikakes G. Recent Progress and Emerging Technologies towards a Sustainable Synthesis of Sulfones. CHEMSUSCHEM 2021; 14:4878-4902. [PMID: 34476903 PMCID: PMC9292207 DOI: 10.1002/cssc.202101635] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Indexed: 06/12/2023]
Abstract
Sulfones play a pivotal role in modern organic chemistry. They are highly versatile building blocks and find various applications as drugs, agrochemicals, or functional materials. Therefore, sustainable access to this class of molecules is of great interest. Herein, the goal was to provide a summary on recent developments in the field of sustainable sulfone synthesis. Advances and existing limitations in traditional approaches towards sulfones were reviewed on selected examples. Furthermore, novel emerging technologies for a more sustainable sulfone synthesis and future directions were discussed.
Collapse
Affiliation(s)
- Shuai Liang
- Department of Medicinal Chemistry, School of PharmacyQingdao University Medical CollegeNo.1 Ningde Road266073QingdaoP. R. China
| | - Kamil Hofman
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Marius Friedrich
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Julian Keller
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Georg Manolikakes
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| |
Collapse
|
12
|
Liu T, Shen X, Liu Z, Shi R, Wei W, Xu Y, Cheng F. An Unexpected C‐S Bond Transformation with High Chemoselectivity for the Synthesis of Aryl‐Benzyl Sulfones. ChemistrySelect 2021. [DOI: 10.1002/slct.202102247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Teng Liu
- College of Chemistry and Environmental Science Qujing Normal University Qujing 655011 P. R. China
| | - Xianfu Shen
- College of Chemistry and Environmental Science Qujing Normal University Qujing 655011 P. R. China
| | - Zining Liu
- College of Chemistry and Environmental Science Qujing Normal University Qujing 655011 P. R. China
| | - Rong Shi
- College of Chemistry and Environmental Science Qujing Normal University Qujing 655011 P. R. China
| | - Wen Wei
- College of Chemistry and Environmental Science Qujing Normal University Qujing 655011 P. R. China
| | - Yanli Xu
- College of Chemistry and Environmental Science Qujing Normal University Qujing 655011 P. R. China
| | - Feixiang Cheng
- College of Chemistry and Environmental Science Qujing Normal University Qujing 655011 P. R. China
| |
Collapse
|
13
|
Visible-Light Photoredox-Catalyzed Sulfonyl Lactonization of Alkenoic Acids with Sulfonyl Chlorides for Sulfonyl Lactone Synthesis. J Org Chem 2021; 86:11998-12007. [PMID: 34404211 DOI: 10.1021/acs.joc.1c01378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A visible-light photoredox-catalyzed sulfonyl lactonization of unsaturated carboxylic acids with sulfonyl chlorides is described. This reaction features good functional group tolerance and a broad substrate scope, providing a simple and efficient protocol to access a wide range of sulfonyl lactones in high to excellent yields. Preliminary mechanistic investigations suggested that a free-radical pathway should be involved in the process.
Collapse
|
14
|
Ye X, Wu X, Guo SR, Huang D, Sun X. Recent advances of sodium sulfinates in radical reactions. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Dong W, Fang ZY, Cao TY, Cao JH, Zhao ZQ, Zhang L, Li W, Qi L, Wang LJ. Copper-Catalyzed Aminosulfonylation of O-Homoallyl Benzimidates with Sodium Sulfinates to Access Sulfonylated 1,3-Oxazines. Org Lett 2021; 23:5809-5814. [PMID: 34279975 DOI: 10.1021/acs.orglett.1c01962] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A facile copper-catalyzed aminosulfonylation of O-homoallyl benzimidates with sodium sulfinates in the presence of tert-butyl peroxybenzoate (TBPB) and XPhos ligand has been developed. By using this protocol, a variety of potentially bioactive 1,3-oxazines were directly synthesized. This method has the merits of a cheap catalyst, easily available and stable sulfone reagents, and simple operation.
Collapse
Affiliation(s)
- Wei Dong
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Zhuo-Yue Fang
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Tong-Yang Cao
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Jie-Hui Cao
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Zi-Qiang Zhao
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Linlin Zhang
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Wei Li
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China.,Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Lin Qi
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Li-Jing Wang
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China.,Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| |
Collapse
|
16
|
Reddy RJ, Kumari AH. Synthesis and applications of sodium sulfinates (RSO 2Na): a powerful building block for the synthesis of organosulfur compounds. RSC Adv 2021; 11:9130-9221. [PMID: 35423435 PMCID: PMC8695481 DOI: 10.1039/d0ra09759d] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/31/2021] [Indexed: 12/15/2022] Open
Abstract
This review highlights the preparation of sodium sulfinates (RSO2Na) and their multifaceted synthetic applications. Substantial progress has been made over the last decade in the utilization of sodium sulfinates emerging as sulfonylating, sulfenylating or sulfinylating reagents, depending on reaction conditions. Sodium sulfinates act as versatile building blocks for preparing many valuable organosulfur compounds through S-S, N-S, and C-S bond-forming reactions. Remarkable advancement has been made in synthesizing thiosulfonates, sulfonamides, sulfides, and sulfones, including vinyl sulfones, allyl sulfones, and β-keto sulfones. The significant achievement of developing sulfonyl radical-triggered ring-closing sulfonylation and multicomponent reactions is also thoroughly discussed. Of note, the most promising site-selective C-H sulfonylation, photoredox catalytic transformations and electrochemical synthesis of sodium sulfinates are also demonstrated. Holistically, this review provides a unique and comprehensive overview of sodium sulfinates, which summarizes 355 core references up to March 2020. The chemistry of sodium sulfinate salts is divided into several sections based on the classes of sulfur-containing compounds with some critical mechanistic insights that are also disclosed.
Collapse
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University Hyderabad 500 007 India
| | - Arram Haritha Kumari
- Department of Chemistry, University College of Science, Osmania University Hyderabad 500 007 India
| |
Collapse
|
17
|
Hua J, Bian M, Ma T, Yang M, He W, Yang Z, Liu C, Fang Z, Guo K. The sunlight-promoted aerobic selective cyclization of olefinic amides and diselenides. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02273j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel sunlight-promoted approach for the selective synthesis of selenated iminoisobenzofurans or isoindolinones via the aerobic O-cyclization or N-cyclization of olefinic amides with diselenides has been developed.
Collapse
Affiliation(s)
- Jiawei Hua
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Mixue Bian
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Tao Ma
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Man Yang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zhao Yang
- College of Engineering
- China Pharmaceutical University
- Nanjing 210003
- China
| | - ChengKou Liu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| |
Collapse
|
18
|
Ding R, Mao M, Jia W, Fu J, Liu L, Mao Y, Guo Y, Wang P. Synthesis of Sulfonylated Pyrrolines and Pyrrolinones via Ag‐mediated Radical Cyclization of Olefinic Enamides with Sodium Sulfinates. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ran Ding
- College of Chemistry and Materials Engineering Anhui Science and Technology University, Bengbu Anhui 233100 P. R.China
| | - Ming‐Hua Mao
- College of Chemistry and Materials Engineering Anhui Science and Technology University, Bengbu Anhui 233100 P. R.China
| | - Wei‐Zhen Jia
- College of Chemistry and Materials Engineering Anhui Science and Technology University, Bengbu Anhui 233100 P. R.China
| | - Jian‐Ming Fu
- College of Chemistry and Materials Engineering Anhui Science and Technology University, Bengbu Anhui 233100 P. R.China
| | - Lei Liu
- College of Chemistry and Materials Engineering Anhui Science and Technology University, Bengbu Anhui 233100 P. R.China
| | - Yue‐Yuan Mao
- College of Chemistry and Materials Engineering Anhui Science and Technology University, Bengbu Anhui 233100 P. R.China
| | - Yu Guo
- College of Chemistry and Materials Engineering Anhui Science and Technology University, Bengbu Anhui 233100 P. R.China
| | - Pei‐Long Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry Huaibei Normal University, Huaibei Anhui 235000 P. R. China
- C Information College Huaibei Normal University Huaibei 235000 P. R. China
| |
Collapse
|
19
|
Wu Z, Hao S, Hu J, Shen H, Lai M, Liu P, Xi G, Wang P, Zhao S, Zhang X, Zhao M. Copper‐Catalyzed Decarboxylative Reductive Sulfonylation of α‐Oxocarboxylic Acids with Aryl Sulfonyl Hydrazines. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhiyong Wu
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Shuai Hao
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Jingyan Hu
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Hongtao Shen
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9, 3th Jingkai Avenue Zhengzhou 450000 Henan P. R. China
| | - Miao Lai
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Pengfei Liu
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Gaolei Xi
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9, 3th Jingkai Avenue Zhengzhou 450000 Henan P. R. China
| | - Pengfei Wang
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9, 3th Jingkai Avenue Zhengzhou 450000 Henan P. R. China
| | - Shengchen Zhao
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9, 3th Jingkai Avenue Zhengzhou 450000 Henan P. R. China
| | - Xiaoping Zhang
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Mingqin Zhao
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| |
Collapse
|
20
|
Dong D, Han Q, Yang S, Song J, Li N, Wang Z, Xu X. Recent Progress in Sulfonylation via Radical Reaction with Sodium Sulfinates, Sulfinic Acids, Sulfonyl Chlorides or Sulfonyl Hydrazides. ChemistrySelect 2020. [DOI: 10.1002/slct.202003650] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Dao‐Qing Dong
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Qing‐Qing Han
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Shao‐Hui Yang
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Jing‐Cheng Song
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Na Li
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Zu‐Li Wang
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Xin‐Ming Xu
- College ofChemistry and Chemical Engineering Yantai University Yantai 264005 P.R. China
| |
Collapse
|
21
|
Ge J, Ding Q, Long X, Liu X, Peng Y. Copper(II)-Catalyzed Domino Synthesis of 4-Benzenesulfonyl Isoxazoles from 2-Nitro-1,3-enynes, Amines, and Sodium Benzenesulfinate. J Org Chem 2020; 85:13886-13894. [PMID: 33084339 DOI: 10.1021/acs.joc.0c01964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A simple and effective method for the synthesis of fully substituted 4-benzenesulfonyl isoxazoles through a copper(II)-catalyzed three-component reaction of 2-nitro-1,3-enynes, amines, and sodium benzenesulfinate is described. The reaction proceeds smoothly under mild conditions and provides the benzenesulfonyl isoxazoles with high chemoselectivity.
Collapse
Affiliation(s)
- Junying Ge
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.,Institute of Coordination Catalysis, Engineering Center of Jiangxi, University for Lithium Energy and Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, Yichun University, Yichun, Jiangxi 336000, China
| | - Qiuping Ding
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xujing Long
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xuan Liu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yiyuan Peng
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
22
|
Mulina OM, Ilovaisky AI, Parshin VD, Terent'ev AO. Oxidative Sulfonylation of Multiple Carbon‐Carbon bonds with Sulfonyl Hydrazides, Sulfinic Acids and their Salts. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000708] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Olga M. Mulina
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexey I. Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Vadim D. Parshin
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| |
Collapse
|
23
|
Copper/DTBP-Promoted Oxyselenation of Propargylic Amines with Diselenides and CO 2: Synthesis of Selenyl 2-Oxazolidinones. J Org Chem 2020; 85:10924-10933. [PMID: 32786223 DOI: 10.1021/acs.joc.0c01519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A highly efficient electrophilic oxyselenation of propargylic amines with diselenides and CO2 under atmospheric pressure promoted by copper/DTBP is reported. Various biologically important selenyl 2-oxazolidinones were produced in moderate to excellent yields. The developed method features a broad substrate scope, easy scalability, and mild reaction conditions.
Collapse
|
24
|
Lima F, André J, Marziale A, Greb A, Glowienke S, Meisenbach M, Schenkel B, Martin B, Sedelmeier J. Continuous Flow as Enabling Technology: Synthesis of Heteroaromatic Sulfinates as Bench Stable Cross-Coupling Partners. Org Lett 2020; 22:6082-6085. [DOI: 10.1021/acs.orglett.0c02155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fabio Lima
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma
AG, Basel, 4056, Switzerland
- Chemical and Analytical Development, Novartis Pharma AG, Basel, 4056, Switzerland
| | - Jérôme André
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma
AG, Basel, 4056, Switzerland
| | - Alexander Marziale
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma
AG, Basel, 4056, Switzerland
| | - Andreas Greb
- Chemical and Analytical Development, Novartis Pharma AG, Basel, 4056, Switzerland
| | - Susanne Glowienke
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, 4056, Switzerland
| | - Mark Meisenbach
- Chemical and Analytical Development, Novartis Pharma AG, Basel, 4056, Switzerland
| | - Berthold Schenkel
- Chemical and Analytical Development, Novartis Pharma AG, Basel, 4056, Switzerland
| | - Benjamin Martin
- Chemical and Analytical Development, Novartis Pharma AG, Basel, 4056, Switzerland
| | - Joerg Sedelmeier
- Chemical and Analytical Development, Novartis Pharma AG, Basel, 4056, Switzerland
| |
Collapse
|
25
|
Shiri P. An overview on the copper‐promoted synthesis of five‐membered heterocyclic systems. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5600] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pezhman Shiri
- Department of ChemistryShiraz University Shiraz Iran
| |
Collapse
|
26
|
Dong W, Qi L, Song JY, Chen JM, Guo JX, Shen S, Li LJ, Li W, Wang LJ. Direct Synthesis of Sulfonylated Spiro[indole-3,3'-pyrrolidines] by Silver-Mediated Sulfonylation of Acrylamides Coupled with Indole Dearomatization. Org Lett 2020; 22:1830-1835. [PMID: 32073279 DOI: 10.1021/acs.orglett.0c00158] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A dearomative tandem spiro-cyclization reaction of N-[(1H-indol-3-yl)methyl]methacrylamide derivatives with sulfinate sodium in the presence of AgNO3 and K2CO3 is reported, which produced sulfonylated spiro[indole-3,3'-pyrrolidines] in medium to excellent yields. The characteristics of this transformation contain good functional group tolerance and ease of operation.
Collapse
Affiliation(s)
- Wei Dong
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, People's Republic of China
| | - Lin Qi
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, People's Republic of China
| | - Jin-Yan Song
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, People's Republic of China
| | - Jia-Min Chen
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, People's Republic of China
| | - Jia-Xin Guo
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, People's Republic of China
| | - Song Shen
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, People's Republic of China
| | - Li-Jun Li
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, People's Republic of China
| | - Wei Li
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, People's Republic of China.,Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, People's Republic of China
| | - Li-Jing Wang
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, People's Republic of China.,Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, People's Republic of China
| |
Collapse
|
27
|
Li L, Zhang XG, Hu BL, Zhang XH. Copper-Catalyzed Electrophilic Cyclization of N-Propargylamines with Sodium Sulfinate for the Synthesis of 3-Sulfonated Quinolines. Chem Asian J 2019; 14:4358-4364. [PMID: 31680431 DOI: 10.1002/asia.201901298] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/20/2019] [Indexed: 12/17/2022]
Abstract
A convenient and effective protocol for the synthesis of 3-sulfonated quinolines via copper-catalyzed electrophilic cyclization of N-propargylamines has been developed, in which cheap and stable sodium sulfinates were utilized as green sulfonylation reagents. This cascade transformation involves radical addition, cyclization and dehydrogenative aromatization processes in a one-pot reaction under mild conditions.
Collapse
Affiliation(s)
- Ling Li
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan Town, Wenzhou, 325035, China
| | - Xing-Guo Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan Town, Wenzhou, 325035, China
| | - Bo-Lun Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan Town, Wenzhou, 325035, China
| | - Xiao-Hong Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan Town, Wenzhou, 325035, China
| |
Collapse
|
28
|
Rao WH, Jiang LL, Liu XM, Chen MJ, Chen FY, Jiang X, Zhao JX, Zou GD, Zhou YQ, Tang L. Copper(II)-Catalyzed Alkene Aminosulfonylation with Sodium Sulfinates For the Synthesis of Sulfonylated Pyrrolidones. Org Lett 2019; 21:2890-2893. [PMID: 30958680 DOI: 10.1021/acs.orglett.9b00907] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A copper-catalyzed direct aminosulfonylation of unactivated alkenes with sodium sulfinates for the efficient synthesis of sulfonylated pyrrolidones is described. This reaction features good functional group tolerance and wide substrate scope, providing an efficient and straightforward protocol to access this kind of pyrrolidones. Moreover, preliminary mechanistic investigations disclosed that a free-radical pathway might be invovled in the process.
Collapse
Affiliation(s)
- Wei-Hao Rao
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang 464000 , China.,Henan Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan , Xinyang Normal University , Xinyang 464000 , China
| | - Li-Li Jiang
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang 464000 , China
| | - Xiao-Meng Liu
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang 464000 , China
| | - Mei-Jun Chen
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang 464000 , China
| | - Fang-Yuan Chen
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang 464000 , China
| | - Xin Jiang
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang 464000 , China
| | - Jin-Xiao Zhao
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang 464000 , China
| | - Guo-Dong Zou
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang 464000 , China
| | - Yu-Qiang Zhou
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang 464000 , China
| | - Lin Tang
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang 464000 , China
| |
Collapse
|
29
|
Yang T, Kou P, Jin F, Song XR, Bai J, Ding H, Xiao Q, Liang YM. TFA-promoted sulfonation/cascade cyclization of 2-propynolphenols with sodium sulfinates to 4-sulfonyl 2H-chromenes under metal-free conditions. Org Chem Front 2019. [DOI: 10.1039/c9qo00712a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel, efficient and metal-free cascade sulfonylation/cyclization of 2-propynolphenols with commercially available sodium sulfinates was developed for the synthesis of 4-sulfonyl 2H-chromenes under mild conditions.
Collapse
Affiliation(s)
- Tao Yang
- Institute of Organic Chemistry
- Jiangxi Science & Technology Normal University
- Key Laboratory of Organic Chemistry
- Nanchang 330013
- China
| | - Peihao Kou
- Institute of Organic Chemistry
- Jiangxi Science & Technology Normal University
- Key Laboratory of Organic Chemistry
- Nanchang 330013
- China
| | - Fengyan Jin
- Institute of Organic Chemistry
- Jiangxi Science & Technology Normal University
- Key Laboratory of Organic Chemistry
- Nanchang 330013
- China
| | - Xian-Rong Song
- Institute of Organic Chemistry
- Jiangxi Science & Technology Normal University
- Key Laboratory of Organic Chemistry
- Nanchang 330013
- China
| | - Jiang Bai
- Institute of Organic Chemistry
- Jiangxi Science & Technology Normal University
- Key Laboratory of Organic Chemistry
- Nanchang 330013
- China
| | - Haixin Ding
- Institute of Organic Chemistry
- Jiangxi Science & Technology Normal University
- Key Laboratory of Organic Chemistry
- Nanchang 330013
- China
| | - Qiang Xiao
- Institute of Organic Chemistry
- Jiangxi Science & Technology Normal University
- Key Laboratory of Organic Chemistry
- Nanchang 330013
- China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- China
| |
Collapse
|