1
|
Hasanzadeh A, Saeedi S, Dastanpour L, Biabanaki ZS, Asadi L, Noori H, Hamblin MR, Liu Y, Karimi M. Self-replicating nanomaterials as a new generation of smart nanostructures. Biotechnol Adv 2025; 81:108565. [PMID: 40107431 DOI: 10.1016/j.biotechadv.2025.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/19/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Self-replication is the process by which a system or entity autonomously reproduces or generates copies of itself, transmitting hereditary information through its molecular structure. Self-replication can be attractive for various researchers, ranging from biologists focused on uncovering the origin of life, to synthetic chemists and nanotechnologists studying synthetic machines and nanorobots. The capability of a single structure to act as a template to produce multiple copies of itself could allow the bottom-up engineering of progressively complex reaction networks and nanoarchitectures from simple building blocks. Herein, we review nucleic acid-based and amino acid-based self-replicating systems and completely synthetic artificial systems and specially focused on specific aspects of self-replicating nanomaterials. We describe their mechanisms of action and provide a full discussion of the principal requirements for achieving nanostructures capable of self-replication.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Sara Saeedi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Lida Dastanpour
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Zahra S Biabanaki
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Leili Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Noori
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Center, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Research Center for Science and Technology in Medicine, Tehran University of Medical Science, Islamic Azad University, Tehran, Iran; Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Howlett MG, Fletcher SP. From autocatalysis to survival of the fittest in self-reproducing lipid systems. Nat Rev Chem 2023; 7:673-691. [PMID: 37612460 DOI: 10.1038/s41570-023-00524-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/25/2023]
Abstract
Studying autocatalysis - in which molecules catalyse their own formation - might help to explain the emergence of chemical systems that exhibit traits normally associated with biology. When coupled to other processes, autocatalysis can lead to complex systems-level behaviour in apparently simple mixtures. Lipids are an important class of chemicals that appear simple in isolation, but collectively show complex supramolecular and mesoscale dynamics. Here we discuss autocatalytic lipids as a source of extraordinary behaviour such as primitive chemical evolution, chemotaxis, temporally controllable materials and even as supramolecular catalysts for continuous synthesis. We survey the literature since the first examples of lipid autocatalysis and highlight state-of-the-art synthetic systems that emulate life, displaying behaviour such as metabolism and homeostasis, with special consideration for generating structural complexity and out-of-equilibrium models of life. Autocatalytic lipid systems have enormous potential for building complexity from simple components, and connections between physical effects and molecular reactivity are only just beginning to be discovered.
Collapse
Affiliation(s)
- Michael G Howlett
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Stephen P Fletcher
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Abstract
As the remit of chemistry expands beyond molecules to systems, new synthetic targets appear on the horizon. Among these, life represents perhaps the ultimate synthetic challenge. Building on an increasingly detailed understanding of the inner workings of living systems and advances in organic synthesis and supramolecular chemistry, the de novo synthesis of life (i.e., the construction of a new form of life based on completely synthetic components) is coming within reach. This Account presents our first steps in the journey toward this long-term goal. The synthesis of life requires the functional integration of different subsystems that harbor the different characteristics that are deemed essential to life. The most important of these are self-replication, metabolism, and compartmentalization. Integrating these features into a single system, maintaining this system out of equilibrium, and allowing it to undergo Darwinian evolution should ideally result in the emergence of life. Our journey toward de novo life started with the serendipitous discovery of a new mechanism of self-replication. We found that self-assembly in a mixture of interconverting oligomers is a general way of achieving self-replication, where the assembly process drives the synthesis of the very molecules that assemble. Mechanically induced breakage of the growing replicating assemblies resulted in their exponential growth, which is an important enabler for achieving Darwinian evolution. Through this mechanism, the self-replication of compounds containing peptides, nucleobases, and fully synthetic molecules was achieved. Several examples of evolutionary dynamics have been observed in these systems, including the spontaneous diversification of replicators allowing them to specialize on different food sets, history dependence of replicator composition, and the spontaneous emergence of parasitic behavior. Peptide-based replicator assemblies were found to organize their peptide units in space in a manner that, inadvertently, gives rise to microenvironments that are capable of catalysis of chemical reactions or binding-induced activation of cofactors. Among the reactions that can be catalyzed by the replicators are ones that produce the precursors from which these replicators grow, amounting to the first examples of the assimilation of a proto-metabolism. Operating these replicators in a chemically fueled out-of-equilibrium replication-destruction regime was found to promote an increase in their molecular complexity. Fueling counteracts the inherent tendency of replicators to evolve toward lower complexity (caused by the fact that smaller replicators tend to replicate faster). Among the remaining steps on the road to de novo life are now to assimilate compartmentalization and achieve open-ended evolution of the resulting system. Success in the synthesis of de novo life, once obtained, will have far-reaching implications for our understanding of what life is, for the search for extraterrestrial life, for how life may have originated on earth, and for every-day life by opening up new vistas in the form living technology and materials.
Collapse
Affiliation(s)
- Sijbren Otto
- Centre for Systems Chemistry, Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
4
|
Kahana A, Lancet D. Self-reproducing catalytic micelles as nanoscopic protocell precursors. Nat Rev Chem 2021; 5:870-878. [PMID: 37117387 DOI: 10.1038/s41570-021-00329-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
Protocells at life's origin are often conceived as bilayer-enclosed precursors of life, whose self-reproduction rests on the early advent of replicating catalytic biopolymers. This Perspective describes an alternative scenario, wherein reproducing nanoscopic lipid micelles with catalytic capabilities were forerunners of biopolymer-containing protocells. This postulate gains considerable support from experiments describing micellar catalysis and autocatalytic proliferation, and, more recently, from reports on cross-catalysis in mixed micelles that lead to life-like steady-state dynamics. Such results, along with evidence for micellar prebiotic compatibility, synergize with predictions of our chemically stringent computer-simulated model, illustrating how mutually catalytic lipid networks may enable micellar compositional reproduction that could underlie primal selection and evolution. Finally, we highlight studies on how endogenously catalysed lipid modifications could guide further protocellular complexification, including micelle to vesicle transition and monomer to biopolymer progression. These portrayals substantiate the possibility that protocellular evolution could have been seeded by pre-RNA lipid assemblies.
Collapse
|
5
|
Matsuo M, Kurihara K. Proliferating coacervate droplets as the missing link between chemistry and biology in the origins of life. Nat Commun 2021; 12:5487. [PMID: 34561428 PMCID: PMC8463549 DOI: 10.1038/s41467-021-25530-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/12/2021] [Indexed: 02/08/2023] Open
Abstract
The hypothesis that prebiotic molecules were transformed into polymers that evolved into proliferating molecular assemblages and eventually a primitive cell was first proposed about 100 years ago. To the best of our knowledge, however, no model of a proliferating prebiotic system has yet been realised because different conditions are required for polymer generation and self-assembly. In this study, we identify conditions suitable for concurrent peptide generation and self-assembly, and we show how a proliferating peptide-based droplet could be created by using synthesised amino acid thioesters as prebiotic monomers. Oligopeptides generated from the monomers spontaneously formed droplets through liquid-liquid phase separation in water. The droplets underwent a steady growth-division cycle by periodic addition of monomers through autocatalytic self-reproduction. Heterogeneous enrichment of RNA and lipids within droplets enabled RNA to protect the droplet from dissolution by lipids. These results provide experimental constructs for origins-of-life research and open up directions in the development of peptide-based materials.
Collapse
Affiliation(s)
- Muneyuki Matsuo
- Department of Chemistry, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo, Japan
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| | - Kensuke Kurihara
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan.
- Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan.
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.
- Faculty of Education, Utsunomiya University, Utsumomiya, Tochigi, Japan.
- Department of Life and Coordination-Complex Molecular Science, Biomolecular Functions, Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan.
| |
Collapse
|
6
|
Jaeschke SO, Vom Sondern I, Lindhorst TK. Synthesis of regioisomeric maltose-based Man/Glc glycoclusters to control glycoligand presentation in 3D space. Org Biomol Chem 2021; 19:7013-7023. [PMID: 34350924 DOI: 10.1039/d1ob01150b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The investigation of carbohydrate recognition in a natural environment suffers from the complexity of overlapping functional effects such as multivalency and heteromultivalency effects. Another key factor in carbohydrate recognition is the presentation mode of glycoligands in three-dimensional (3D) space. In order to trace out the effect of 3D ligand presentation, we utilized an oligosaccharide model to precisely control the spatial relation between a mannose ligand (Man) and a glucose moiety (Glc). A disaccharide (maltose) served as a scaffold to alternately conjugate Man and Glc at position 6 and 6' of a synthetic maltoside, resulting in a pair of regioisomeric heterobivalent glycoclusters. The biological effect of this specific structural tuning was tested in a native system employing mannose-specific adhesion of live E. coli cells. Indeed, the variable 3D presentation of the Man ligand resulted in a 2-fold difference between the regioisomeric heterobivalent glycoclusters as inhibitors of bacterial adhesion. This can be considered a remarkable effect, which could be interpreted by computer-aided modelling of the complexes between the bacterial lectin and the synthetic regioisomeric glycoligands.
Collapse
Affiliation(s)
- Sven Ole Jaeschke
- Christiana Albertina University of Kiel, Otto Diels Institute for Organic Chemistry, Otto-Hahn-Platz 3-4, D-24118 Kiel, Germany.
| | | | | |
Collapse
|
7
|
Abstract
A major goal of synthetic biology is to understand the transition between non-living matter and life. The bottom-up development of an artificial cell would provide a minimal system with which to study the border between chemistry and biology. So far, a fully synthetic cell has remained elusive, but chemists are progressing towards this goal by reconstructing cellular subsystems. Cell boundaries, likely in the form of lipid membranes, were necessary for the emergence of life. In addition to providing a protective barrier between cellular cargo and the external environment, lipid compartments maintain homeostasis with other subsystems to regulate cellular processes. In this Review, we examine different chemical approaches to making cell-mimetic compartments. Synthetic strategies to drive membrane formation and function, including bioorthogonal ligations, dissipative self-assembly and reconstitution of biochemical pathways, are discussed. Chemical strategies aim to recreate the interactions between lipid membranes, the external environment and internal biomolecules, and will clarify our understanding of life at the interface of chemistry and biology.
Collapse
|
8
|
Engwerda AHJ, Southworth J, Lebedeva MA, Scanes RJH, Kukura P, Fletcher SP. Coupled Metabolic Cycles Allow Out‐of‐Equilibrium Autopoietic Vesicle Replication. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Josh Southworth
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Maria A. Lebedeva
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Robert J. H. Scanes
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Philipp Kukura
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Stephen P. Fletcher
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| |
Collapse
|
9
|
Engwerda AHJ, Southworth J, Lebedeva MA, Scanes RJH, Kukura P, Fletcher SP. Coupled Metabolic Cycles Allow Out-of-Equilibrium Autopoietic Vesicle Replication. Angew Chem Int Ed Engl 2020; 59:20361-20366. [PMID: 32706135 PMCID: PMC7692917 DOI: 10.1002/anie.202007302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/06/2020] [Indexed: 12/11/2022]
Abstract
We report chemically fuelled out-of-equilibrium self-replicating vesicles based on surfactant formation. We studied the vesicles' autocatalytic formation using UPLC to determine monomer concentration and interferometric scattering microscopy at the nanoparticle level. Unlike related reports of chemically fuelled self-replicating micelles, our vesicular system was too stable to surfactant degradation to be maintained out of equilibrium. The introduction of a catalyst, which introduces a second catalytic cycle into the metabolic network, was used to close the first cycle. This shows how coupled catalytic cycles can create a metabolic network that allows the creation and perseverance of fuel-driven, out-of-equilibrium self-replicating vesicles.
Collapse
Affiliation(s)
| | - Josh Southworth
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordUK
| | - Maria A. Lebedeva
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordUK
| | | | - Philipp Kukura
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordUK
| | | |
Collapse
|
10
|
Robust Dynamics of Synthetic Molecular Systems as a Consequence of Broken Symmetry. Symmetry (Basel) 2020. [DOI: 10.3390/sym12101688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The construction of molecular robot-like objects that imitate living things is an important challenge for current chemists. Such molecular devices are expected to perform their duties robustly to carry out mechanical motion, process information, and make independent decisions. Dissipative self-organization plays an essential role in meeting these purposes. To produce a micro-robot that can perform the above tasks autonomously as a single entity, a function generator is required. Although many elegant review articles featuring chemical devices that mimic biological mechanical functions have been published recently, the dissipative structure, which is the minimum requirement for mimicking these functions, has not been sufficiently discussed. This article aims to show clearly that dissipative self-organization is a phenomenon involving autonomy, robustness, mechanical functions, and energy transformation. Moreover, it reports the results of recent experiments with an autonomous light-driven molecular device that achieves all of these features. In addition, a chemical model of cell-amplification is also discussed to focus on the generation of hierarchical movement by dissipative self-organization. By reviewing this research, it may be perceived that mainstream approaches to synthetic chemistry have not always been appropriate. In summary, the author proposes that the integration of catalytic functions is a key issue for the creation of autonomous microarchitecture.
Collapse
|
11
|
Hanopolskyi AI, Smaliak VA, Novichkov AI, Semenov SN. Autocatalysis: Kinetics, Mechanisms and Design. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.202000026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anton I. Hanopolskyi
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| | - Viktoryia A. Smaliak
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| | - Alexander I. Novichkov
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| | - Sergey N. Semenov
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| |
Collapse
|
12
|
Post EAJ, Fletcher SP. Dissipative self-assembly, competition and inhibition in a self-reproducing protocell model. Chem Sci 2020; 11:9434-9442. [PMID: 34094210 PMCID: PMC8162124 DOI: 10.1039/d0sc02768e] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
The bottom-up synthesis of artificial, life-like systems promises to enable the study of emergent properties distinctive to life. Here, we report protocell systems generated from phase-separated building blocks. Vesicle protocells self-reproduce through a phase-transfer mechanism, catalysing their own formation. Dissipative self-assembly by the protocells is achieved when a hydrolysis step to destroy the surfactant is introduced. Competition between micelle and vesicle based replicators for a common feedstock shows that environmental conditions can control what species predominates: under basic conditions vesicles predominate, but in a neutral medium micelles are selected for via a mechanism which inhibits vesicle formation. Finally, the protocells enable orthogonal reactivity by catalysing in situ formation of an amphiphilic organocatalyst, which after incorporation into the vesicle bilayer enantioselectively forms a secondary product.
Collapse
Affiliation(s)
- Elias A J Post
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Stephen P Fletcher
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
13
|
Affiliation(s)
- Iuliia Myrgorodska
- University of OxfordChemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Ignacio Colomer
- University of OxfordChemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Stephen P. Fletcher
- University of OxfordChemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
14
|
Otvagin VF, Kuzmina NS, Krylova LV, Volovetsky AB, Nyuchev AV, Gavryushin AE, Meshkov IN, Gorbunova YG, Romanenko YV, Koifman OI, Balalaeva IV, Fedorov AY. Water-Soluble Chlorin/Arylaminoquinazoline Conjugate for Photodynamic and Targeted Therapy. J Med Chem 2019; 62:11182-11193. [PMID: 31782925 DOI: 10.1021/acs.jmedchem.9b01294] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new water-soluble conjugate, consisting of a chlorin-e6 photosensitizer part, a 4-arylaminoquinazoline moiety with affinity to epidermal growth factor receptors, and a hydrophilic β-d-maltose fragment, was synthesized starting from methylpheophorbide-a in seven steps. The prepared conjugate exhibited low levels of dark cytotoxicity and pronounced photoinduced cytotoxicity at submicromolar concentrations in vitro, with an IC50(dark)/IC50(light) ratio of ∼368 and a singlet oxygen quantum yield of about 20%. In tumor-bearing Balb/c nude mice, conjugate 1 preferentially accumulates in the tumor tissue. Irradiation of the nude mice bearing A431 xenograft tumors after intravenous administration of the prepared conjugate with a relatively low light dose (50 J/cm2) produced an excellent therapeutic effect with profound tumor regression and low systemic toxicity.
Collapse
Affiliation(s)
- Vasilii F Otvagin
- Lobachevsky State University of Nizhny Novgorod , Gagarina Avenue 23 , Nizhny Novgorod 603950 , Russia
| | - Natalia S Kuzmina
- Lobachevsky State University of Nizhny Novgorod , Gagarina Avenue 23 , Nizhny Novgorod 603950 , Russia
| | - Lubov V Krylova
- Lobachevsky State University of Nizhny Novgorod , Gagarina Avenue 23 , Nizhny Novgorod 603950 , Russia
| | - Arthur B Volovetsky
- Lobachevsky State University of Nizhny Novgorod , Gagarina Avenue 23 , Nizhny Novgorod 603950 , Russia
| | - Alexander V Nyuchev
- Lobachevsky State University of Nizhny Novgorod , Gagarina Avenue 23 , Nizhny Novgorod 603950 , Russia
| | | | - Ivan N Meshkov
- Frumkin Institute of Physical Chemistry and Electrochemistry , Russian Academy of Sciences , Leninsky pr. 31-4 , Moscow 119071 , Russia
| | - Yulia G Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry , Russian Academy of Sciences , Leninsky pr. 31-4 , Moscow 119071 , Russia.,Kurnakov Institute of General and Inorganic Chemistry , Russian Academy of Sciences , Leninsky pr. 31 , Moscow 119991 , Russia
| | - Yuliya V Romanenko
- Research Institute of Macroheterocycles , Ivanovo State University of Chemical Technology , 153000 Ivanovo , Russia
| | - Oscar I Koifman
- Research Institute of Macroheterocycles , Ivanovo State University of Chemical Technology , 153000 Ivanovo , Russia
| | - Irina V Balalaeva
- Lobachevsky State University of Nizhny Novgorod , Gagarina Avenue 23 , Nizhny Novgorod 603950 , Russia
| | - Alexey Yu Fedorov
- Lobachevsky State University of Nizhny Novgorod , Gagarina Avenue 23 , Nizhny Novgorod 603950 , Russia
| |
Collapse
|