1
|
Gao JJ, Wu LH, Yu SQ, Zhu X, Zeng Y, Yang K, Wang ZY. Synthesis of Oxazoles Containing CF 3-Substituted Alcohol Unit via Tandem Cycloisomerization/Hydroxyalkylation from N-Propargylamides with Trifluoropyruvates. Molecules 2024; 29:5848. [PMID: 39769937 PMCID: PMC11728596 DOI: 10.3390/molecules29245848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Oxazoles are important five-membered heterocycles that contain both nitrogen and oxygen atoms. Due to their wide range of biological activities, many oxazoles demonstrate potential for extensive application in various fields, including medicinal chemistry. Trifluoromethyl carbinol, an important pharmacophore, contains both trifluoromethyl and hydroxyl groups and is common in molecules with important biological activities. Constructing oxazoles that contain a trifluoromethyl carbinol unit is undoubtedly important and valuable for expanding the chemical space in drug discovery. In this study, a simple and efficient method was developed for the synthesis of oxazoles containing a CF3-substituted alcohol unit via the tandem cycloisomerization/hydroxyalkylation of N-propargylamides with trifluoropyruvates through a rational Lewis acid catalytic mechanism. This Zn(OTf)2-catalyzed synthetic protocol is operationally simple and provides a series of oxazoles in moderate to good yields. The protocol demonstrates broad substrate scope, high functional group tolerance, and high atom economy and can achieve gram-level reactions, indicating the strong possibility of its practical application.
Collapse
Affiliation(s)
- Juan-Juan Gao
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (J.-J.G.); (L.-H.W.); (S.-Q.Y.); (X.Z.)
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China;
| | - Long-Hui Wu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (J.-J.G.); (L.-H.W.); (S.-Q.Y.); (X.Z.)
| | - Shu-Qin Yu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (J.-J.G.); (L.-H.W.); (S.-Q.Y.); (X.Z.)
| | - Xue Zhu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (J.-J.G.); (L.-H.W.); (S.-Q.Y.); (X.Z.)
| | - Yu Zeng
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China;
| | - Kai Yang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (J.-J.G.); (L.-H.W.); (S.-Q.Y.); (X.Z.)
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China;
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China;
| |
Collapse
|
2
|
Espinosa M, Leyva-Pérez A. Domino dehydration/intermolecular (enantioselective) ketone-ene reactions catalysed by a simple solid in batch and in flow. RSC Adv 2024; 14:32944-32957. [PMID: 39429935 PMCID: PMC11487643 DOI: 10.1039/d4ra06449f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
The intermolecular carbonyl-ene reaction of ketones is still considered a challenge in organic chemistry, particularly with reusable solid catalysts, and implemented in a domino reaction. Herein, we show that the extremely cheap and non-toxic solid salt MgCl2 catalyzes the reaction of trifluoromethyl pyruvates not only during the conventional carbonyl-ene reaction with various aromatic and alkyl alkenes (in very high yields, up to >99%) but also in a domino reaction with the corresponding alcohols (precursors to the alkenes) in similar good yields. The solid can be reused in both cases without any erosion of the catalytic activity and can be employed in an in-flow process to maximize the reaction throughput. Besides, the reaction can be performed under solventless reaction conditions. Addition of a catalytic amount of chiral binaphthyl hydrogen phosphate allows carrying out the reaction with a reasonable enantiomeric excess (up to >70%) and in flow, in a rare example of enantioselective solid-catalyzed domino carbonyl-ene reaction using a cheap, simple, readily available and physically mixed catalytic solid. The MgCl2-catalytic system is also active in the industrially relevant citronellal-to-isopulegol carbonyl-ene reaction. These results pave the way to design sustainable domino carbonyl-ene reactions with extremely cheap solid catalysts.
Collapse
Affiliation(s)
- Miguel Espinosa
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas Avda. de los Naranjos s/n 46022 Valencia Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas Avda. de los Naranjos s/n 46022 Valencia Spain
| |
Collapse
|
3
|
Wang T, Huang B, Wang YQ. Enantioselective Synthesis of Spiro Chroman‐Isoindolinones via Formal (4+2) Cycloaddition of In Situ‐Generated ortho‐Quinone Methides with 3‐Methylene Isoindolinones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Gujjarappa R, Vodnala N, Musib D, Malakar CC. Organocatalytic Decarboxylation and Dual C(sp
3
)−H Bond Functionalization Toward Facile Access to Divergent 2,6‐Diarylpyridines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| | - Nagaraju Vodnala
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
- Department of Chemistry Indian Institute of Technology Delhi Multi-storey building, HauzKhas New Delhi 110016 India
| | - Dulal Musib
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| |
Collapse
|
5
|
Quintavalla A, Veronesi R, Carboni D, Martinelli A, Zaccheroni N, Mummolo L, Lombardo M. Chemodivergent Photocatalytic Synthesis of Dihydrofurans and β,γ‐Unsaturated Ketones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Arianna Quintavalla
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Ruben Veronesi
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Davide Carboni
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Ada Martinelli
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Nelsi Zaccheroni
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Liviana Mummolo
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Marco Lombardo
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
6
|
Yang Q, Zhu Y, Deng G. CuOTf/TfOH-mediated tandem reaction of conjugated ene-yne-ketones: Synthesis of novel spiro dihydrofurans. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Kaur M, Van Humbeck JF. Recent trends in catalytic sp 3 C-H functionalization of heterocycles. Org Biomol Chem 2020; 18:606-617. [PMID: 31912069 DOI: 10.1039/c9ob01559k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heterocycles are a ubiquitous substructure in organic small molecules designed for use in materials and medicines. Recent work in catalysis has focused on enabling access to new heterocycle structures by sp3 C-H functionalization on alkyl side-chain substituents-especially at the heterobenzylic position-with more than two hundred manuscripts published just within the last ten years. Rather than describing in detail each of these reports, in this mini-review we attempt to highlight gaps in existing techniques. A semi-quantitative overview of ongoing work strongly suggests that several specific heterocycle types and bond formations outside of C-C, C-N, and C-O have been almost completely overlooked.
Collapse
Affiliation(s)
- Milanpreet Kaur
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4.
| | - Jeffrey F Van Humbeck
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4.
| |
Collapse
|