1
|
Tang L, Jia F, Zhang L, Wu T, Wei X, Zheng L, Zhou Q. Base-Dependent Divergent Carbodifluoroalkylation and Halodifluoroalkylation of Alkenes under Visible-Light Irradiation. J Org Chem 2024; 89:13457-13471. [PMID: 39225232 DOI: 10.1021/acs.joc.4c01591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Organic molecules containing a difluoroalkyl group are valuable and versatile chemicals because of their unique physicochemical and biological properties. Accordingly, the development of efficient and practical difluoroalkylation for the preparation of these compounds is important and attractive. Herein, we demonstrate photoredox-catalyzed and base-dependent selective carbodifluoroalkylation and halodifluoroalkylation of alkenes using readily available 2-(allyloxy)arylaldehydes [or 2-(allylamino)arylaldehydes] and XCF2COOEt (or BrCF2CONR1R2) as starting materials. The developed reaction enables convenient and accurate synthesis of difluoroalkylated chroman-4-ones and aldehydes and features broad substrate scope, mild conditions, and operational simplicity. Moreover, gram-scale product preparation and application of the title protocol in late-stage functionalization of pharmaceutical molecules are accomplished.
Collapse
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Fengjuan Jia
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Lufang Zhang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Taijun Wu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Xinmeng Wei
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Lingyun Zheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| |
Collapse
|
2
|
Joseph E, Smith I, Tunge JA. Cobalt-catalyzed decarboxylative difluoroalkylation of nitrophenylacetic acid salts. Chem Sci 2023; 14:13902-13907. [PMID: 38075641 PMCID: PMC10699560 DOI: 10.1039/d3sc05583c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/13/2023] [Indexed: 02/12/2024] Open
Abstract
The selective installation of fluorine-containing groups into biologically relevant molecules has been used as a common strategy for the development of pharmaceutically active molecules. However, the selective incorporation of gem-difluoromethylene groups next to sterically demanding secondary and tertiary alkyl groups remains a challenge. Herein, we report the first cobalt-catalyzed regioselective difluoroalkylation of carboxylic acid salts. The reaction allows for the facile construction of various difluoroalkylated products in good yields tolerating a wide range of functionalities on either reaction partner. The potential of the method is illustrated by the late-stage functionalization of molecules of biological relevance. Mechanistic studies support the in situ formation of a cobalt(i) species and the intermediacy of difluoroalkyl radicals, thus suggesting a Co(i)/Co(ii)/Co(iii) catalytic cycle.
Collapse
Affiliation(s)
- Ebbin Joseph
- Department of Chemistry, The University of Kansas 1567 Irving Rd, Lawrence KS 66045 USA
| | - Ian Smith
- Department of Chemistry, The University of Kansas 1567 Irving Rd, Lawrence KS 66045 USA
| | - Jon A Tunge
- Department of Chemistry, The University of Kansas 1567 Irving Rd, Lawrence KS 66045 USA
| |
Collapse
|
3
|
Dong DQ, Yang SH, Wu P, Wang JZ, Min LH, Yang H, Zhou MY, Wei ZH, Ding CZ, Wang YL, Gao JH, Wang SJ, Wang ZL. Copper-Catalyzed Difluoroalkylation Reaction. Molecules 2022; 27:molecules27238461. [PMID: 36500553 PMCID: PMC9740754 DOI: 10.3390/molecules27238461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/07/2022] Open
Abstract
This review describes recent advances in copper-catalyzed difluoroalkylation reactions. The RCF2 radical is generally proposed in the mechanism of these reactions. At present, various types of copper-catalyzed difluoroalkylation reactions have been realized. According to their characteristics, we classify these difluoroalkylation reactions into three types.
Collapse
Affiliation(s)
- Dao-Qing Dong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shao-Hui Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Pei Wu
- Shandong Academy of Pesticide Sciences, Beiyuan Street, Jinan 250033, China
- Correspondence: (P.W.); (Z.-L.W.)
| | - Jin-Zhi Wang
- Tancheng County Agricultural Technology Popularization Center, Linyi 276100, China
| | - Ling-Hao Min
- Qingdao Zhongda Agritech Co., Ltd., Qingdao 266109, China
| | - Hao Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Meng-Yu Zhou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ze-Hui Wei
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Cai-Zhen Ding
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan-Li Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jia-Hui Gao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shu-Jie Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zu-Li Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (P.W.); (Z.-L.W.)
| |
Collapse
|
4
|
Yang Z, Chen L, Sun Q, Guo M, Wang G, Zhao W, Tang X. Tetrahydroxydiboron and Nickel Chloride Cocatalyzed Rapid Radical Cyclization toward Pyrrolizidine and Indolizidine Alkaloids. J Org Chem 2022; 87:3788-3793. [PMID: 35188782 DOI: 10.1021/acs.joc.1c02874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel tetrahydroxydiboron and nickel chloride cocatalyzed radical cyclization cascade with a broad substrate scope and an ultrashort reaction time was developed. The mechanistic investigation indicated that the reaction might involve a homocleavage of tetrahydroxydiboron and nickel hydride intermediates. This approach enables the simple and efficient synthesis of a series of heteropolycycles.
Collapse
Affiliation(s)
- Zequn Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Longhui Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Qi Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
5
|
Experimental measurement, thermodynamic analysis and molecular simulation of topiramate solubility in fourteen mono-solvents at various temperatures. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Zhou S, Sun ZY, Zhu K, Zhao W, Tang X, Guo M, Wang G. Metal-Free Difunctionalization of Pyridines: Selective Construction of N-CF 2H and N-CHO Dihydropyridines. Org Lett 2021; 23:2205-2211. [PMID: 33635677 DOI: 10.1021/acs.orglett.1c00352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The reactivity of N-difluoromethylpyridinium salts is seldom explored because of their instability and low availability. Here we present a novel nucleophilic addition of N-difluoromethylpyridinium salts with nitroalkanes to synthesize N-CF2H-dihydropyridines and N-CHO-dihydropyridines in a highly efficient and regioselective pathway. This protocol exhibits good functional group tolerance and good to excellent yields.
Collapse
Affiliation(s)
- Sen Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Ze-Ying Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Kongying Zhu
- Nuclear Magnetic Resonance Testing Center, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
7
|
Hou X, Zhou S, Li Y, Guo M, Zhao W, Tang X, Wang G. Synthesis of Indolizines from Pyridinium Salts and Ethyl Bromodifluoroacetate. Org Lett 2020; 22:9313-9318. [DOI: 10.1021/acs.orglett.0c03540] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiaoya Hou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Sen Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Yuli Li
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
8
|
Sun ZY, Zhou S, Yang K, Guo M, Zhao W, Tang X, Wang G. Tetrahydroxydiboron-Promoted Radical Addition of Alkynols. Org Lett 2020; 22:6214-6219. [DOI: 10.1021/acs.orglett.0c02367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ze-Ying Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Sen Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Kai Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
9
|
Ye ZP, Xia PJ, Liu F, Hu YZ, Song D, Xiao JA, Huang P, Xiang HY, Chen XQ, Yang H. Visible-Light-Induced, Catalyst-Free Radical Cross-Coupling Cyclization of N-Allylbromodifluoroacetamides with Disulfides or Diselenides. J Org Chem 2020; 85:5670-5682. [PMID: 32240591 DOI: 10.1021/acs.joc.9b03490] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A visible-light-induced, catalyst-free radical cross-coupling cyclization of diselenides or disulfides with N-allylbromodifluoroacetamide has been developed. This developed protocol exhibits good functional group tolerance and affords a variety of 4-thio- and 4-seleno-substituted 3,3-difluoro-γ-lactams in moderate to good yields. Based on control experiments, a plausible radical-radical cross-coupling pathway is proposed.
Collapse
Affiliation(s)
- Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Peng-Ju Xia
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Fang Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yuan-Zhuo Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Dan Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun-An Xiao
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning, Guangxi 530001, P. R. China
| | - Ping Huang
- Technology Center of Hunan Provincial Tobacco Company, 386 Labor Middle Road, Changsha 410019, China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
10
|
Liu L, Si M, Han S, Zhang Y, Li J. Copper-catalyzed regioselective sulfonylcyanations of vinylarenes. Org Chem Front 2020. [DOI: 10.1039/d0qo00415d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A set of copper-catalyzed sulfonylcyanations of vinylarenes with readily accessible arylsulfonyl chlorides and trimethyl cyanide was achieved, providing a streamlined route to various decorated β-sulfonyl nitriles with good regioselectivity and functional group tolerance.
Collapse
Affiliation(s)
- Lei Liu
- School of Pharmaceutical Sciences
- Jiangnan University. Lihu Avenue 1800
- Wuxi 214122
- China
| | - Mingran Si
- School of Pharmaceutical Sciences
- Jiangnan University. Lihu Avenue 1800
- Wuxi 214122
- China
| | - Shengnan Han
- School of Pharmaceutical Sciences
- Jiangnan University. Lihu Avenue 1800
- Wuxi 214122
- China
| | - Yan Zhang
- School of Pharmaceutical Sciences
- Jiangnan University. Lihu Avenue 1800
- Wuxi 214122
- China
| | - Jie Li
- School of Pharmaceutical Sciences
- Jiangnan University. Lihu Avenue 1800
- Wuxi 214122
- China
- Key Laboratory of Organic Synthesis of Jiangsu Province
| |
Collapse
|
11
|
Dong DQ, Yang H, Shi JL, Si WJ, Wang ZL, Xu XM. Promising reagents for difluoroalkylation. Org Chem Front 2020. [DOI: 10.1039/d0qo00567c] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes recent advances in difluoroalkylation reactions using different substrates.
Collapse
Affiliation(s)
- Dao-Qing Dong
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Huan Yang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Jun-Lian Shi
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Wen-Jia Si
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Zu-Li Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Xin-Ming Xu
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| |
Collapse
|
12
|
Li C, Zhao Y, Zhou J, Wang X, Hou J, Song Y, Liu W, Han G. Synthesis of difluoroalkylated 2-azaspiro[4.5]decane derivatives via copper-catalyzed difluoroalkylation/dearomatization of N-benzylacrylamides. Org Biomol Chem 2020; 18:8376-8380. [DOI: 10.1039/d0ob01833c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A copper-catalyzed synthesis of difluoroalkylated spiro-azacycles from N-benzylacrylamides is presented. The reaction involves the β-difluoroalkylation of acrylamide, 5-exo cyclization, and dearomatization.
Collapse
Affiliation(s)
- Chengwen Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Yilin Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Jiaxin Zhou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Xue Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Jingli Hou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Wenjuan Liu
- Jiangsu Duxingzhiyuan New Material Technology Co. Ltd
- Nantong
- 226300
- P. R. China
| | - Guifang Han
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| |
Collapse
|
13
|
Liu C, Yang YJ, Dong JY, Zhou MD, Li L, Wang H. Copper/B 2pin 2-Catalyzed Difluoroalkylation of Methylenecyclopropanes with Bromodifluorinated Acetates and Acetamides: One-Pot Synthesis of CF 2-Containing Dihydronaphthalene Derivatives. J Org Chem 2019; 84:9937-9945. [PMID: 31347848 DOI: 10.1021/acs.joc.9b01106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Novel copper/B2pin2-catalyzed difluoroalkylation of methylenecyclopropanes with bromodifluorinated acetates and acetamides via a tandem radical process involving ring-opening/intramolecular cyclization has been reported. This protocol is not only tolerated to a diverse range of substrates but also applicable to the synthesis of useful difluoromethylated compounds. Moreover, the reaction could be performed on a gram scale with a high yield, which opens up the possibility for practical applications.
Collapse
Affiliation(s)
- Chuang Liu
- School of Chemistry and Materials Science , Liaoning Shihua University , Fushun 113001 , P. R. China
| | - Yan-Jie Yang
- School of Chemistry and Materials Science , Liaoning Shihua University , Fushun 113001 , P. R. China
| | - Jun-Ying Dong
- School of Chemistry and Materials Science , Liaoning Shihua University , Fushun 113001 , P. R. China
| | - Ming-Dong Zhou
- School of Chemistry and Materials Science , Liaoning Shihua University , Fushun 113001 , P. R. China
| | - Lei Li
- School of Chemistry and Materials Science , Liaoning Shihua University , Fushun 113001 , P. R. China
| | - He Wang
- School of Chemistry and Materials Science , Liaoning Shihua University , Fushun 113001 , P. R. China
| |
Collapse
|