1
|
Wu C. Motif-Directed Oxidative Folding to Design and Discover Multicyclic Peptides for Protein Recognition. Acc Chem Res 2025. [PMID: 40083048 DOI: 10.1021/acs.accounts.5c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
ConspectusMulticyclic peptides that are constrained through covalent cross-linkers can usually maintain stable three-dimensional (3D) structures without the necessity of incorporating noncovalently interacting cores. This configuration allows for a greater utilization of residues for functional purposes compared to larger proteins, rendering multicyclic peptides attractive molecular modalities for the development of chemical tools and therapeutic agents. Even smaller multicyclic peptides, which may lack stable 3D structures due to limited sequence-driven folding capabilities, can still benefit from the specific conformations stabilized by covalent cross-linkers to facilitate target binding. Disulfide-rich peptides (DRPs) are a class of particularly significant multicyclic peptides that are primarily composed of disulfide bonds in their interior. However, the structural diversity of DRPs is limited to a few naturally occurring and designer scaffolds, which significantly impedes the development of multicyclic peptide ligands and therapeutics. To address this issue, we developed a novel method that utilizes disulfide-directing motifs to design and discover DRPs with new structures and functions in random sequence space. Compared with traditional DRPs, these new DRPs that incorporate disulfide-directing motifs exhibit more precise oxidative folding regarding disulfide pairing and demonstrate greater tolerance to sequence manipulations. Thus, we designated these peptides as disulfide-directed multicyclic peptides (DDMPs).Over the past decade, we have developed a new class of multicyclic peptides by leveraging disulfide-directing motifs, including biscysteine motifs such as CPXXC, CPPC, and CXC (C: cysteine; P: proline; X: any amino acid), as well as triscysteine motifs that rationally combine two biscysteine motifs (e.g., CPPCXC and CPXXCXC) to direct the oxidative folding of peptides. This leads to the introduction of a novel concept known as motif-directed oxidative folding, which is valuable for the construction of peptides with multiple disulfide bonds. A large diversity of DDMPs have been designed by simply altering the disulfide-directing motifs, the arrangement of cysteine residues (i.e., cysteine patterns), and the number of random residues separating them. As the oxidative folding of DDMPs is primarily determined by disulfide-directing motifs, these peptides are intrinsically more tolerant of extensive sequence manipulations compared to traditional DRPs. Consequently, multicyclic peptide libraries with an unprecedented high degree of sequence randomization have been developed by utilizing commonly used biological display systems such as phage display. We have validated the applicability of these libraries by successfully discovering DDMPs with unique protein-like 3D structures and high affinity and specificity to various cell-surface receptors, including tumor-associated antigens, immune costimulatory receptors, and G protein-coupled receptors (GPCRs). Currently, multicyclic peptides used in clinical settings are of natural origin or derived from natural DRPs. Our studies have opened up the possibility of developing multicyclic peptides without relying on natural scaffolds, representing a pivotal breakthrough in the field of peptide ligand and drug discovery. Further investigations will facilitate the application of our DDMPs in broader fields such as bioanalysis, chemical biology, and biomedicine.
Collapse
Affiliation(s)
- Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Bird MJ, Dawson PE. A Shelf Stable Fmoc Hydrazine Resin for the Synthesis of Peptide Hydrazides. Pept Sci (Hoboken) 2022; 114:e24268. [PMID: 36387422 PMCID: PMC9662761 DOI: 10.1002/pep2.24268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/30/2022]
Abstract
C-terminal hydrazides are an important class of synthetic peptides with an ever expanding scope of applications, but their widespread application for chemical protein synthesis has been hampered due to the lack of stable resin linkers for synthesis of longer and more challenging peptide hydrazide fragments. We present a practical method for the regeneration, loading, and storage of trityl-chloride resins for the production of hydrazide containing peptides, leveraging 9-fluorenylmethyl carbazate. We show that these resins are extremely stable under several common resin storage conditions. The application of these resins to solid phase peptide synthesis (SPPS) is demonstrated through the synthesis of the 40-mer GLP-1R agonist peptide "P5". These studies support the broad utility of Fmoc-NHNH-Trt resins for SPPS of C-terminal hydrazide peptides.
Collapse
Affiliation(s)
- Michael J. Bird
- Department of ChemistryThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Philip E. Dawson
- Department of ChemistryThe Scripps Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
3
|
Dong H, Li J, Liu H, Lu S, Wu J, Zhang Y, Yin Y, Zhao Y, Wu C. Design and Ribosomal Incorporation of Noncanonical Disulfide-Directing Motifs for the Development of Multicyclic Peptide Libraries. J Am Chem Soc 2022; 144:5116-5125. [PMID: 35289603 DOI: 10.1021/jacs.2c00216] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The engineering of naturally occurring disulfide-rich peptides (DRPs) has been significantly hampered by the difficulty of manipulating disulfide pairing. New DRPs that take advantage of fold-directing motifs and noncanonical thiol-bearing amino acids are easy-to-fold with expected disulfide connectivities, representing a new class of scaffolds for the development of peptide ligands and therapeutics. However, the limited diversity of the scaffolds and particularly the use of noncanonical amino acids [e.g., penicillamine (Pen)] that are difficult to be translated by ribosomes greatly hamper the further development and application of these DRPs. Here, we designed and synthesized noncanonical bisthiol motifs bearing sterically obstructed thiol groups analogous to the Pen thiol to direct the folding of peptides into specific bicyclic and tricyclic structures. These bisthiol motifs can be ribosomally incorporated into peptides through a commercially available PURE system integrated with genetic code reprograming, which enables, for the first time, the in vitro expression of bicyclic peptides with two noncanonical and orthogonal disulfide bonds. We further constructed a bicyclic peptide library encoded by mRNA, with which new bicyclic peptide ligands with nanomolar affinity to proteins were successfully selected. Therefore, this study provides a new, general, and robust method for discovering de novo DRPs with new structures and functions not derived from natural peptides, which would greatly benefit the field of peptide drug discovery.
Collapse
Affiliation(s)
- Huilei Dong
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Jinjing Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Hongtan Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Shuaimin Lu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Junjie Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P.R. China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P.R. China
| | - Yizhen Yin
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P.R. China
| | - Yibing Zhao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| |
Collapse
|
4
|
Huang Z, Wu Y, Dong H, Zhao Y, Wu C. Design and Synthesis of Disulfide-Rich Peptides with Orthogonal Disulfide Pairing Motifs. J Org Chem 2020; 85:11475-11481. [PMID: 32786636 DOI: 10.1021/acs.joc.0c01600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Disulfide-rich peptides (DRPs) are a class of peptides that are constrained through two or more disulfide bonds. Though natural DRPs have been extensively exploited for developing protein binders or potential therapeutics, their synthesis and re-engineering to bind new targets are not straightforward due to difficulties in handling the disulfide pairing problem. Rationally designed DRPs with an intrinsically orthogonal disulfide pairing propensity provide an alternative to the natural scaffolds for developing functional DRPs. Herein we report the use of tandem CXPen/PenXC motifs ((C) cysteine; (Pen) penicillamine; (X) any residue) for directing the oxidative folding of peptides. Diverse tricyclic peptides were designed and synthesized by varying the pattern of C/Pen residues and incorporating a tandem CXPen/PenXC motif into peptides. The folding of these peptides was determined primarily by C/Pen patterns and tolerated to sequence manipulations. The applicability of the designed C/Pen-DRPs was demonstrated by designing protein binders using an epitope grafting strategy. This study thus demonstrates the potential of using orthogonal disulfide pairing to design DRP scaffolds with new structures and functions, which would greatly benefit the development of multicyclic peptide ligands and therapeutics.
Collapse
Affiliation(s)
- Zirong Huang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yapei Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, People's Republic of China
| | - Huilei Dong
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
5
|
Singh N, Singh R, Joshi KB, Verma S. Constitutionally Isomeric Aromatic Tripeptides: Self-Assembly and Metal-Ion-Modulated Transformations. Chempluschem 2020; 85:2001-2009. [PMID: 32876402 DOI: 10.1002/cplu.202000464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/10/2020] [Indexed: 12/21/2022]
Abstract
Self-assembling peptides based on aromatic amino acids can adopt diverse nanostructures which primarily depend on their molecular structures. Therefore, to understand the nature of self-assembly on the molecular level we rationally designed two constitutional isomers of short aromatic peptides. The first isomer consists of a tyrosine moiety at the N-terminus and the second isomer consists of a tyrosine moiety at the C-terminus of the FF peptide, a core recognition motif of Amyloid β peptides. Therefore, it can be considered that both the designed tripeptides are the analogues of the FFF peptide with only atomic(-H) level replacement by -OH functional group on the first and last phenyl ring, respectively. The first isomer self-assembled into 2D porous nanosheets ("Nanowebs"), however the second isomers produced toroidal shapes with central spheres ("Nano-Saturn" like assemblies). Interestingly, the presence of the transition-metal ions (copper, zinc and iron) triggered the self-assembly of both the peptides into fibrous circular discs, nanomats and nanoplates like assembly.
Collapse
Affiliation(s)
- Narendra Singh
- Department of Chemistry, Indian Institute of Technology-Kanpur, Kanpur, 208016, India
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology-Kanpur, Kanpur, 208016, India
| |
Collapse
|