1
|
Chao D, Liu TX, Zhang P, Xia S, Zhang G. Copper-Mediated Radical-Induced Ring-Opening Relay Cascade Carboannulation Reaction of [60]Fullerene with Cyclobutanone Oxime Esters: Access to [60]Fullerene-Fused Cyclopentanes. J Org Chem 2023; 88:13076-13088. [PMID: 37651613 DOI: 10.1021/acs.joc.3c01291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
An unexpected copper-mediated radical-induced ring-opening relay cascade carboannulation reaction of [60]fullerene with cyclobutanone oxime esters is presented for the preparation of various Cl-/Br-incorporated [60]fullerene-fused cyclopentanes. The unique relay cascade transformation uses inexpensive copper salts as promoters and halogen sources and features simple redox-neutral conditions and a broad substrate scope, providing a practical access to a class of novel five-membered carbocycle-fused fullerenes.
Collapse
Affiliation(s)
- Di Chao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Pengling Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Shilu Xia
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
2
|
Luo K, Zhao Y, Tang Z, Li W, Lin J, Jin Y. Visible-Light-Induced Dual C(sp 3)-H Bond Functionalization of Tertiary Amine via Hydrogen Transfer to Carbene and Subsequent Cycloaddition. Org Lett 2022; 24:6335-6340. [PMID: 35985018 DOI: 10.1021/acs.orglett.2c02557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we describe the dual C(sp3)-H bond functionalization of a tertiary amine through hydride-transfer-induced dehydrogenation, followed by cycloaddition, using an easily preparable diazoester as a new type hydride-acceptor precursor under mild, redox-neutral conditions. With carbene as a hydrogen acceptor, this method was demonstrated by the preparation of a broad range of functionalized isoxazoldines in moderate to good yields.
Collapse
Affiliation(s)
- Kaixiu Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Yongqiang Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhiliang Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Weina Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
3
|
Malliaros NG, Kellner ID, Drewello T, Orfanopoulos M. Decatungstate-Photocatalyzed Addition of Lactones to [60]Fullerene. J Org Chem 2021; 86:9876-9882. [PMID: 34184900 DOI: 10.1021/acs.joc.1c00954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new, one step functionalization of C60 with lactones has been developed. This photochemical approach utilizes a variety of lactonyl radicals deriving from lactones through a hydrogen atom abstraction process mediated by tetrabutylammonium decatungstate [(n-Bu4N)4W10O32]. This reaction provides access to a previously unknown class of materials, namely 1-lactonyl-2-hydro[60]fullerenes. A mechanism for this new reaction has been proposed based mainly on the structure of reaction products and deuterium-incorporated experiments.
Collapse
Affiliation(s)
- Nikitas G Malliaros
- Department of Chemistry, University of Crete, 70013 Voutes Heraklion, Greece
| | - Ina D Kellner
- Physical Chemistry I, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Thomas Drewello
- Physical Chemistry I, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | | |
Collapse
|
4
|
Yang Y, Niu C, Chen M, Yang S, Wang GW. Electrochemical regioselective alkylations of a [60]fulleroindoline with bulky alkyl bromides. Org Biomol Chem 2020; 18:4783-4787. [PMID: 32520053 DOI: 10.1039/d0ob00876a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrochemical alkylations of a [60]fulleroindoline with different bulky alkyl bromides exhibit different reaction behaviors. The hydroalkylation and dialkylation of the electrochemically generated dianionic [60]fulleroindoline with bulky 2,4,6-tris(bromomethyl)mesitylene give rise to 1,2,3,16-adducts. In comparison, the hydroalkylation of the dianionic [60]fulleroindoline with bulkier diphenylbromomethane still affords a 1,2,3,16-adduct, while the corresponding dialkylation provides a sterically favoured 1,4,9,12-adduct, which is scarcely investigated, as the major product along with the isomeric 1,2,3,16-adduct as the minor product. The structures of these products have been determined by spectroscopic data and single-crystal X-ray diffraction analysis. A plausible reaction mechanism has been proposed to explain the formation of the observed products.
Collapse
Affiliation(s)
- Yong Yang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Chuang Niu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Muqing Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Guan-Wu Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China. and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
5
|
Wang LC, Geng HQ, Peng JB, Wu XF. Iron-Catalyzed Synthesis of 2-Aminofurans from 2-Haloketones and Tertiary Amines or Enamines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Le-Cheng Wang
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus 310018 Hangzhou People's Republic of China
| | - Hui-Qing Geng
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus 310018 Hangzhou People's Republic of China
| | - Jin-Bao Peng
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus 310018 Hangzhou People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus 310018 Hangzhou People's Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|