1
|
Sun Z, Zhang XS, Bian SW, Zhang C, Han YP, Liang YM. New synthetic approaches for the construction of difluoromethylated architectures. Org Biomol Chem 2025; 23:3029-3075. [PMID: 40013736 DOI: 10.1039/d4ob02000f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Fluorinated compounds play a vital role in the fields of agrochemicals, pharmaceuticals, and materials science because of their unique lipophilicity, permeability, and metabolic stability. Among all such appealing fluorine-containing functional groups, the difluoromethyl group has attracted considerable attention owing to its outstanding chemical and physical properties. It has been used as a lipophilic hydrogen bond donor and a bioisostere of thiol, hydroxy, or amino groups. The excellent properties of the CF2H group have motivated many chemists to develop effective strategies for the selective incorporation of the CF2H group into target molecules. Over the past decades, a variety of efficient, atom-economical, and facile methods have been discovered for the difluoromethylation of organic substrates. This review summarizes the developments in different types of difluoromethylations, which could be classified into the following categories: radical difluoromethylation, transition metal-catalyzed difluoromethylation, and nucleophilic and electrophilic difluoromethylation.
Collapse
Affiliation(s)
- Zhou Sun
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, China
| | - Xue-Song Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Shao-Wei Bian
- Tianjin Eco-Environmental Monitoring Center, Tianjin, China
| | - Chun Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Jesani MH, Schwarz M, Kim S, Evans FL, White A, Browning A, Abrams R, Clayden J. Selective Defluorination of Trifluoromethyl Substituents by Conformationally Induced Remote Substitution. Angew Chem Int Ed Engl 2024; 63:e202403477. [PMID: 38587304 DOI: 10.1002/anie.202403477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
The selective reduction of an aromatic trifluoromethyl substituent to a difluoromethyl substituent may be achieved by base-promoted elimination to form a difluoro-p-quinomethide which is trapped by an intramolecular nucleophile. High yields are obtained when the nucleophilic trap entails the conformationally favoured cyclisation of an aminoisobutyric acid (Aib) derivative. The resulting cyclised difluoromethyl-substituted arylimidazolidinone products are readily converted to versatile difluoromethyl-substituted aldehydes by reduction and hydrolysis. Defluorination is successful on a range of benzenoid (both para and ortho CF3-substituted) and heterocyclic substrates. Double defluorination may likewise be achieved sequentially, or in a single step, from an Aib dipeptide derivative.
Collapse
Affiliation(s)
- Mehul H Jesani
- School of Chemistry, University of Bristol Cantock's Close, Bristol, BS8 1TS, UK
| | - Maria Schwarz
- School of Chemistry, University of Bristol Cantock's Close, Bristol, BS8 1TS, UK
| | - Shiwhu Kim
- School of Chemistry, University of Bristol Cantock's Close, Bristol, BS8 1TS, UK
| | - Finlay L Evans
- School of Chemistry, University of Bristol Cantock's Close, Bristol, BS8 1TS, UK
| | - Alexander White
- School of Chemistry, University of Bristol Cantock's Close, Bristol, BS8 1TS, UK
| | - Alex Browning
- School of Chemistry, University of Bristol Cantock's Close, Bristol, BS8 1TS, UK
| | - Roman Abrams
- School of Chemistry, University of Bristol Cantock's Close, Bristol, BS8 1TS, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
3
|
Tamizharasan N, Santhoshkumar P, Devarajan N, Hallur MS, Hallur G, Suresh P. Silver-Promoted Rapid Synthesis of 3-Arylindan-1-ones: Microwave-Assisted Reductive Coupling of N-Tosylhydrazone and Boronic Acids. J Org Chem 2024. [PMID: 38768212 DOI: 10.1021/acs.joc.3c02676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
An efficient and straightforward one-pot tandem synthesis of 3-arylindan-1-ones was consummated through silver nitrate-promoted C-C coupling of simple indane-1,3-dione with arylboronic acid via 1,3-indanedione monotosylhydrazone under microwave conditions. The resulting series of 3-arylindan-1-ones exhibited impressive yields, surpassing those achievable with traditional methods and requiring a shorter time frame. This innovative approach significantly accelerated the synthesis of biologically active compounds such as (+)-indatraline (Lu 19-005) and several other industrially relevant substances.
Collapse
Affiliation(s)
- Natarajan Tamizharasan
- Supramolecular and Catalysis Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
- Medicinal Chemistry Department, Jubilant Biosys Ltd., Bangalore, Karnataka 560022, India
| | - Pandeeswaran Santhoshkumar
- Supramolecular and Catalysis Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | - Nainamalai Devarajan
- Supramolecular and Catalysis Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | - Mahanandeesha S Hallur
- Medicinal Chemistry Department, Jubilant Biosys Ltd., Bangalore, Karnataka 560022, India
| | - Gurulingappa Hallur
- Medicinal Chemistry Department, Jubilant Biosys Ltd., Bangalore, Karnataka 560022, India
| | - Palaniswamy Suresh
- Supramolecular and Catalysis Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| |
Collapse
|
4
|
Wu LH, Liu X, Liu ZW, Chen ZX, Fu XL, Yang K. Metal-free synthesis of difluoro/trifluoromethyl carbinol-containing chromones via tandem cyclization of o-hydroxyaryl enaminones. Org Biomol Chem 2023; 21:9236-9241. [PMID: 37966029 DOI: 10.1039/d3ob01582c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
We herein propose a HFIP-promoted tandem cyclization reaction for the synthesis of difluoro/trifluoromethyl carbinol-containing chromones from o-hydroxyphenyl enaminones at room temperature. This protocol provides a facile and efficient approach to access diverse difluoro/trifluoromethylated carbinols in good to excellent yields. In addition, gram-scale and synthetic derivatization experiments have also been performed.
Collapse
Affiliation(s)
- Long-Hui Wu
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| | - Xia Liu
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| | - Zhao-Wen Liu
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| | - Zhi-Xi Chen
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| | - Xin-Lei Fu
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| | - Kai Yang
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.
| |
Collapse
|
5
|
Wei Z, Zheng W, Wan X, Hu J. Copper-Catalyzed Enantioselective Difluoromethylation-Alkynylation of Olefins by Solving the Dilemma between Acidities and Reduction Potentials of Difluoromethylating Agents. Angew Chem Int Ed Engl 2023; 62:e202308816. [PMID: 37466977 DOI: 10.1002/anie.202308816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/20/2023]
Abstract
Molecules containing a difluoromethyl group or a propargylic stereocenter are widely used in pharmaceuticals and agrochemicals, and 1,2-functionalization of olefins is an important method for introducing the two groups into molecules simultaneously. The construction of the propargylic stereocenter with terminal alkynes usually requires bases. However, difluoromethylating agents with high reduction potentials often decompose in the presence of bases because of their acidities, and those with low reduction potentials are stable but difficult to undergo the desired single electron transfer (SET) reduction. Using the linear relationship between reduction potential differences (ΔE) and Hammett substituent constants (σ) of difluoromethyl aryl sulfones, we solved the dilemma between acidities and reduction potentials of difluoromethylating agents. Herein, we report the first enantioselective difluoromethylation-alkynylation of olefins with difluoromethyl 4-chlorophenyl sulfone with high enantioselectivity (>90 % ee). We also extended this asymmetric fluoroalkylation-alkynylation reaction with other fluoroalkyl sulfones, which enabled efficient installation of trifluoromethyl, difluoroalkyl, difluorobenzyl, (benzenesulfonyl)-difluoromethyl and monofluoromethyl groups into products.
Collapse
Affiliation(s)
- Zhiqiang Wei
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Weiqin Zheng
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Xiaolong Wan
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| |
Collapse
|
6
|
Shi L, An D, Mei GJ. Difluoromethylation of Heterocycles via a Radical Process. Org Chem Front 2022. [DOI: 10.1039/d2qo00762b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Difluoromethylation is of prime importance for its applicability in functionalizing diverse fluorine-containing heterocycles, which are core moieties of various biologically and pharmacologically active ingredients. Due to their significant biological and...
Collapse
|
7
|
Britton R, Gouverneur V, Lin JH, Meanwell M, Ni C, Pupo G, Xiao JC, Hu J. Contemporary synthetic strategies in organofluorine chemistry. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00042-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Wei Z, Miao W, Ni C, Hu J. Iron‐Catalyzed Fluoroalkylation of Arylborates with Sulfone Reagents: Beyond the Limitation of Reduction Potential. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhiqiang Wei
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Wenjun Miao
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| |
Collapse
|
9
|
Wei Z, Miao W, Ni C, Hu J. Iron-Catalyzed Fluoroalkylation of Arylborates with Sulfone Reagents: Beyond the Limitation of Reduction Potential. Angew Chem Int Ed Engl 2021; 60:13597-13602. [PMID: 33761156 DOI: 10.1002/anie.202102597] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Indexed: 12/11/2022]
Abstract
The iron-catalyzed alkyl-aryl coupling reaction between sulfones and arylboron compounds has remained a challenge. We report the first iron-catalyzed radical difluoroalkylation of arylborates with N-heteroaryl sulfones. The coordination between the iron catalyst and the nitrogen atom of N-heteroaryl sulfones was identified to be important in overcoming the reduction potential limitation of sulfones in the intermolecular single-electron-transfer process, which enables both fluoroalkyl N-heteroaryl sulfones (with relatively high reduction potentials) and nonfluorinated alkyl N-heteroaryl sulfones (with low reduction potentials) to serve as powerful alkylation reagents.
Collapse
Affiliation(s)
- Zhiqiang Wei
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Wenjun Miao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| |
Collapse
|
10
|
Hell Z, Juhász K, Magyar Á. Transition-Metal-Catalyzed Cross-Coupling Reactions of Grignard Reagents. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1705986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractTransition-metal-catalyzed cross-coupling of organohalides, ethers, sulfides, amines, and alcohols (and derivatives thereof) with Grignard reagents, known as the Kumada–Tamao–Corriu reaction, can be used to prepare important intermediates in the synthesis of numerous biologically active compounds. The most frequently used transition metals are nickel, palladium, and iron, but there are several examples for cross-coupling reactions catalyzed by copper, cobalt, manganese, chromium, etc. salts and complexes. The aim of this review is to summarize the most important transition-metal-catalyzed cross-coupling reactions realized in the period 2000 to 2020.1 Introduction2 Nickel Catalysis3 Palladium Catalysis4 Iron Catalysis5 Catalysis by Other Transition Metals5.1 Cobalt Catalysis5.2 Copper Catalysis5.3 Manganese Catalysis5.4 Chromium Catalysis6 Conclusion
Collapse
|
11
|
Chiral copper-catalyzed enantioselective Michael difluoromethylation of arylidene meldrum's acids with (difluoromethyl)zinc reagents. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|