1
|
Araya-Hermosilla E, Carlotti M, Orozco F, Lima GMR, Araya-Hermosilla R, Ortega DE, Cortés-Arriagada D, Picchioni F, Bose RK, Mattoli V, Pucci A. Tailoring Thermomechanical, Shape Memory and Self-Healing Properties of Furan-Based Polyketone via Diels-Alder Chemistry with Different Bismaleimide Crosslinkers. Polymers (Basel) 2025; 17:565. [PMID: 40076057 PMCID: PMC11902186 DOI: 10.3390/polym17050565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 03/14/2025] Open
Abstract
Furan/maleimide dynamic covalent chemistry has been extensively used to fabricate re-workable and self-healing thermosets. Understanding the relationship between crosslinker structure, network dynamics, and material final properties, however, remains a challenge. This study introduces self-healing and shape-memory thermosets derived from furan-functionalized polyketones (PKFU) crosslinked with aromatic bis-maleimides, i.e., 1,1'-(methylenedi-4,1-phenylene)bis-maleimide (BISM1) and bis(3-ethyl-5-methyl-4-maleimidophenyl)methane (BISM2), via a thermally reversible Diels-Alder reaction. Polyketones were chemically modified with furfurylamine through the Paal-Knorr reaction, achieving varying furan grafting ratios. The resulting networks, characterized by ATR-FTIR, 1H-NMR, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and rheology, demonstrated tunable thermomechanical properties. BISM2-based thermosets exhibited enhanced thermal stability and reversibility over a broad temperature range (20-120 °C), with a shape recovery ratio of up to 89% and complete self-healing at 120 °C within 5 min. These findings highlight the potential of polyketone-based thermosets for applications requiring adaptive thermomechanical properties, efficient self-repair, and sustainability.
Collapse
Affiliation(s)
- Esteban Araya-Hermosilla
- Facultad de Ciencias Físicas y Matemáticas, Departamento de Ingeniería Química, Biotecnología y Materiales, Universidad de Chile, Beauchef 851, Santiago 8370456, Chile
| | - Marco Carlotti
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124 Pisa, Italy;
- Center for Materials Interfaces, Istituto Italiano di Tecnologia Viale Rinaldo Piaggio 34, 56025 Pontedera, PI, Italy;
| | - Felipe Orozco
- Department of Chemical Product Engineering, ENTEG, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (F.O.); (G.M.R.L.); (F.P.); (R.K.B.)
| | - Guilherme Macedo R. Lima
- Department of Chemical Product Engineering, ENTEG, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (F.O.); (G.M.R.L.); (F.P.); (R.K.B.)
| | - Rodrigo Araya-Hermosilla
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile; (R.A.-H.); (D.C.-A.)
| | - Daniela E. Ortega
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Facultad de Salud, Universidad Bernardo O’Higgins, General Gana 1702, Santiago 8370854, Chile;
| | - Diego Cortés-Arriagada
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile; (R.A.-H.); (D.C.-A.)
| | - Francesco Picchioni
- Department of Chemical Product Engineering, ENTEG, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (F.O.); (G.M.R.L.); (F.P.); (R.K.B.)
| | - Ranjita K. Bose
- Department of Chemical Product Engineering, ENTEG, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (F.O.); (G.M.R.L.); (F.P.); (R.K.B.)
| | - Virgilio Mattoli
- Center for Materials Interfaces, Istituto Italiano di Tecnologia Viale Rinaldo Piaggio 34, 56025 Pontedera, PI, Italy;
| | - Andrea Pucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124 Pisa, Italy;
| |
Collapse
|
2
|
Sorbelli D, Belanzoni P, Belpassi L, Lee J, Ciancaleoni G. An ETS-NOCV-based computational strategies for the characterization of concerted transition states involving CO 2. J Comput Chem 2022; 43:717-727. [PMID: 35194805 PMCID: PMC9303928 DOI: 10.1002/jcc.26829] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 11/18/2022]
Abstract
Due to the presence of both a slightly acidic carbon and a slightly basic oxygen, carbon dioxide is often involved in concerted transition states (TSs) with two (or more) different molecular events interlaced in the same step. The possibility of isolating and quantitatively evaluating each molecular event would be important to characterize and understand the reaction mechanism in depth. This could be done, in principle, by measuring the relevant distances in the optimized TS, but often distances are not accurate enough, especially in the presence of many simultaneous processes. Here, we have applied the Extended Transition State-Natural Orbital for Chemical Valence-method (ETS-NOCV), also in combination with the Activation Strain Model (ASM) and Energy Decomposition Analysis (EDA), to separate and quantify these molecular events at the TS of both organometallic and organic reactions. For the former, we chose the decomposition of formic acid to CO2 by an iridium catalyst, and for the latter, a CO2 -mediated transamidation and its chemical variations (hydro- and aminolysis of an ester) as case studies. We demonstrate that the one-to-one mapping between the "molecular events" and the ETS-NOCV components is maintained along the entire lowest energy path connecting reactants and products around the TS, thus enabling a detailed picture on the relative importance of each interacting component. The methodology proposed here provides valuable insights into the effect of different chemical substituents on the reaction mechanism and promises to be generally applicable for any concerted TSs.
Collapse
Affiliation(s)
- Diego Sorbelli
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaI‐06123Italy
| | - Paola Belanzoni
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaI‐06123Italy
- CNR Institute of Chemical Science and Technologies “Giulio Natta” (CNR‐SCITEC), c/o Department of ChemistryBiology and Biotechnology, University of PerugiaPerugiaI‐06123Italy
| | - Leonardo Belpassi
- CNR Institute of Chemical Science and Technologies “Giulio Natta” (CNR‐SCITEC), c/o Department of ChemistryBiology and Biotechnology, University of PerugiaPerugiaI‐06123Italy
| | - Ji‐Woong Lee
- Department of ChemistryUniversity of CopenhagenCopenhagenØ 2100Denmark
- Nanoscience CenterUniversity of CopenhagenCopenhagenØ 2100Denmark
| | - Gianluca Ciancaleoni
- Department of Chemistry and Industrial ChemistryUniversity of PisaPisaI‐56124Italy
- CIRCCBariItaly
| |
Collapse
|
3
|
Xiao BX, Jiang B, Yan RJ, Zhu JX, Xie K, Gao XY, Ouyang Q, Du W, Chen YC. A Palladium Complex as an Asymmetric π-Lewis Base Catalyst for Activating 1,3-Dienes. J Am Chem Soc 2021; 143:4809-4816. [PMID: 33730847 DOI: 10.1021/jacs.1c01420] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Here we report that palladium(0) complexes can coordinate in a η2 fashion to 1,3-dienes and significantly raise the energy of their highest occupied molecular orbital (HOMO) by donating the electrons from the d-orbitals to the empty antibonding molecular orbitals of double bonds (π*) via back-bonding. Thus, the uncoordinated double bond, as a more reactive partner on the basis of the principle of vinylogy, can directly attack imines, furnishing a formal hydrodienylation reaction enantioselectively. A chemoselective cascade vinylogous addition/allylic alkylation difunctionalization process between 1,3-dienes and imines with a nucleophilic group is also compatible, by trapping in situ formed π-allylpalladium species after initial ene addition. This π-Lewis base catalytic mode, featuring simple η2coordination, vinylogous activation, and compatibility with both conjugated neutral polyenes and electron-deficient polyenes, is elucidated by control experiments and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Ben-Xian Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Bo Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ru-Jie Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jian-Xiang Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ke Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xin-Yue Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, People's Republic of China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.,College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, People's Republic of China
| |
Collapse
|
4
|
Patel TR, Ganguly B. Revealing the Origin of Π‐facial and Regioselectivity in the Diels‐Alder Reaction of Unsymmetrical, Cage‐annulated 1,3‐Cyclohexadiene with Ethyl Propiolate Dienophile: a DFT Study. ChemistrySelect 2020. [DOI: 10.1002/slct.202003443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tulsi R. Patel
- Computation and Simulation Unit (Analytical & Environmental Science Division and Centralized Instrument Facility) CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, India- 364 002 Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
- Computation and Simulation Unit (Analytical & Environmental Science Division and Centralized Instrument Facility) CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, India- 364 002 Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Bishwajit Ganguly
- Computation and Simulation Unit (Analytical & Environmental Science Division and Centralized Instrument Facility) CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, India- 364 002 Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
- Computation and Simulation Unit (Analytical & Environmental Science Division and Centralized Instrument Facility) CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, India- 364 002 Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| |
Collapse
|
5
|
Grimblat N, Sarotti AM. Looking at the big picture in activation strain model/energy decomposition analysis: the case of the ortho-para regioselectivity rule in Diels-Alder reactions. Org Biomol Chem 2020; 18:1104-1111. [PMID: 31950965 DOI: 10.1039/c9ob02671a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regioselectivity of the Diels-Alder reaction is predicted by the ortho-para rule which has been explained from FMO theory. Using DFT calculations, the activation-strain model and energy decomposition analysis we studied the reaction of methyl acrylate with four unsymmetrical dienes. We found that if the analysis is carried out considering the TS structures, the selectivity would not be explained by the interaction energy as expected considering the FMO arguments. However, a thorough analysis along the reaction path revealed that the interaction energy is responsible for the regioselectivity. A deeper analysis with the EDA model showed that the decisive term that accounts for the HOMO-LUMO interactions favors the ortho and para paths, as predicted by FMO arguments.
Collapse
Affiliation(s)
- Nicolás Grimblat
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas. Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| | - Ariel M Sarotti
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas. Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| |
Collapse
|
6
|
Rodríguez-Kessler PL, Charistos ND, King RB, Muñoz-Castro A. On the formation of spherical aromatic endohedral buckminsterfullerene. Evaluation of M@C 60 (M = Cr, Mo, W) from relativistic DFT calculations. Phys Chem Chem Phys 2020; 22:14268-14275. [PMID: 32555845 DOI: 10.1039/d0cp02475a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Endohedral metallofullerenes are key species for expanding the range of viable fullerenes, their versatility, and applications. Here we report our computational evaluation on the formation of spherical aromatic counterparts of the C60 fullerene from relativistic DFT calculations, based on the inclusion of Cr, Mo and W endohedral atoms. The resulting M@C60 endohedral fullerenes are 66-π electron neutral species exhibiting bonding properties and electronic structure mimicking the aromaticity and diamagnetic insulator behavior of alkali-C606- phases. The resulting structures are interesting candidates for further experimental realization as novel neutral building blocks for more flexible nanostructured organic materials, highlighting truly spherical aromatic neutral species retaining the truncated icosahedral structure of the seminal Buckminster fullerene.
Collapse
Affiliation(s)
- Peter L Rodríguez-Kessler
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile.
| | - Nickolas D Charistos
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Quantum and Computational Chemistry, Thessaloniki, 54 124, Greece
| | - R Bruce King
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA.
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile.
| |
Collapse
|
7
|
Zhao P, Hu S, Lu X, Zhao X. Diels-Alder Cycloaddition on Nonisolated-Pentagon-Rule C2v(19 138)-C 76 and YNC@ C2v(19 138)-C 76: The Difference in Regioselectivity Caused by the Inner Metallic Cluster. J Org Chem 2019; 84:14571-14578. [PMID: 31631661 DOI: 10.1021/acs.joc.9b02103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Diels-Alder reactions of cyclopentadiene to C2v(19 138)-C76 and YNC@C2v(19 138)-C76 violating the isolated pentagon rule have been systematically studied by means of density functional theory calculations. As for the free fullerene, the pentalene-type [5,5]-bond in the adjacent pentagon pair is the most favorable from thermodynamic and kinetic viewpoints, which is attributed to the highly strained carbon atoms accompanied by the suitable lowest unoccupied molecular orbital shape with a large distribution to interact with cyclopentadiene. Upon encapsulating the YNC cluster, a corannulene-type [5,6]-bond and a pyracylene-type [6,6]-bond become the two most reactive addition sites under thermodynamic and kinetic conditions, which possess similar reaction energies and energy barriers. Especially, the [5,6]-bond exhibits a larger reaction energy and a lower energy barrier than that on the free fullerene, which should be ascribed to its shorter bond length and larger π-orbital axis vector value after trapping the metallic cluster. The suitable unoccupied molecular orbital lobes with large distributions on the [5,6]- and [6,6]-bonds are also an advantage of cycloadditions. This work presents the first example that the most favorable addition site is remote from the adjacent pentagon pair in the fullerene cage after encapsulating a metallic cluster.
Collapse
Affiliation(s)
- Pei Zhao
- Institute for Chemical Physics & Department of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, School of Science , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Shuaifeng Hu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan 430074 , China
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan 430074 , China
| | - Xiang Zhao
- Institute for Chemical Physics & Department of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, School of Science , Xi'an Jiaotong University , Xi'an 710049 , China
| |
Collapse
|