Fang X, Hu X, Li QX, Ni SF, Ruan Z. Paired Electro-Synthesis of Remote Amino Alcohols with/in H
2O.
Angew Chem Int Ed Engl 2025;
64:e202418277. [PMID:
39535322 DOI:
10.1002/anie.202418277]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Amino alcohols, particularly remote amino alcohols and peptide alcohols, are valuable due to their functional diversity in biologically active compounds. However, traditional synthesis methods face significant challenges, making electrochemistry an attractive alternative. We have developed a mild and biocompatible sequential paired electrolysis strategy, leveraging copper-electrocatalysis to synthesize diverse remote amino alcohols, including unnatural peptide alcohols. Both experimental results and density functional theory (DFT) calculations demonstrated that water serves as both the hydroxyl source and the solvent, facilitating the generation of CuH with Cu(I) at the cathode, which in turn reduces the aldehyde intermediates formed during the reaction.
Collapse