1
|
Ali AR, Hu L. One-Pot Synthesis of 2-Substituted Indoles and 7-Azaindoles via Sequential Alkynylation and Cyclization of 2-Iodo- N-mesylarylamines and Alkynes in the Presence of Cu 2O. ASIAN J ORG CHEM 2025; 14:e202400421. [PMID: 39830603 PMCID: PMC11741182 DOI: 10.1002/ajoc.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Indexed: 01/22/2025]
Abstract
A one-pot process was developed to synthesize in moderate to high yield a series of 2-substituted indoles and 7-azaindoles starting from 2-iodo-N-mesylarylamines and terminal alkynes in the presence of Cu2O in DMF at 90-120 °C. Without isolation of any intermediate, our optimized conditions enabled the introduction of ester, phenyl, hydroxymethyl, hydroxyethyl, N-Boc-aminomethyl, and methyl at the 2-postion of indoles and 7-azaindoles. The reaction tolerates a variety of substrates containing halogens, or acid- or base-sensitive functional groups without requiring a Pd catalyst, a ligand, or a base.
Collapse
Affiliation(s)
- Ahmed R. Ali
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey 08854, USA
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Longqin Hu
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
2
|
Gao Q, Wang B, Jiang H, Wu W. Palladium-Catalyzed Tandem Cyclization of Functional Diarylalkynes and Isocyanides for the Assembly of Isochromeno[4,3- c]quinolines. J Org Chem 2024; 89:18370-18383. [PMID: 39656089 DOI: 10.1021/acs.joc.4c02142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A novel strategy for the synthesis of various isochromeno[4,3-c]quinolines via palladium-catalyzed tandem cyclization of functional diarylalkynes with isocyanides has been developed. This approach features excellent chemo- and regioselectivities as well as good functional group tolerance. Notably, 6-phenylimino-6H-isochromeno[4,3-c]quinolin-11-amines and 11-amino-6H-isochromeno[4,3-c]quinolin-6-ones can be selectively constructed by employing different protecting groups of functional diarylalkynes. The gram-scale and late-stage modifications further demonstrate the synthetic value of this method.
Collapse
Affiliation(s)
- Qiushan Gao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Binbin Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Kamble OS, Khatravath M, Dandela R. Applications of Ethynylanilines as Substrates for Construction of Indoles and Indole‐Substituted Derivatives. ChemistrySelect 2021. [DOI: 10.1002/slct.202101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Omkar S. Kamble
- Department of Industrial and Engineering Chemistry Institute of Chemical Technology Indian oil Odisha Campus, Kharagpur extension Centre, Mouza, Samantpuri Bhubaneswar 751013 Odisha India
| | - Mahender Khatravath
- Department of Chemistry Central university of South Bihar, Gaya SH-7, Panchanpur Road, Karhara, Post Fatehpur, Gaya Bihar 824236 India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry Institute of Chemical Technology Indian oil Odisha Campus, Kharagpur extension Centre, Mouza, Samantpuri Bhubaneswar 751013 Odisha India
| |
Collapse
|
4
|
Cai T, Feng C, Shen F, Bian K, Wu C, Shen R, Gao Y. Synthesis of 2‐Substituted Benzothio(seleno)phenes and Indoles
via
Ag‐Catalyzed Cyclization/Demethylation of 2‐Alkynylthio(seleno)anisoles and 2‐Alkynyldimethylanilines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Tao Cai
- Department College of Chemistry and Chemical Engineering Shaoxing University Shaoxing 312000 P. R. China
| | - Chengjie Feng
- Department College of Chemistry and Chemical Engineering Shaoxing University Shaoxing 312000 P. R. China
| | - Fangqi Shen
- Department College of Chemistry and Chemical Engineering Shaoxing University Shaoxing 312000 P. R. China
| | - Kejun Bian
- Department College of Chemistry and Chemical Engineering Shaoxing University Shaoxing 312000 P. R. China
| | - Chunlei Wu
- Department College of Chemistry and Chemical Engineering Shaoxing University Shaoxing 312000 P. R. China
| | - Runpu Shen
- Department College of Chemistry and Chemical Engineering Shaoxing University Shaoxing 312000 P. R. China
| | - Yuzhen Gao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| |
Collapse
|
5
|
Collet JW, Roose TR, Weijers B, Maes BUW, Ruijter E, Orru RVA. Recent Advances in Palladium-Catalyzed Isocyanide Insertions. Molecules 2020; 25:E4906. [PMID: 33114013 PMCID: PMC7660339 DOI: 10.3390/molecules25214906] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Isocyanides have long been known as versatile chemical reagents in organic synthesis. Their ambivalent nature also allows them to function as a CO-substitute in palladium-catalyzed cross couplings. Over the past decades, isocyanides have emerged as practical and versatile C1 building blocks, whose inherent N-substitution allows for the rapid incorporation of nitrogeneous fragments in a wide variety of products. Recent developments in palladium catalyzed isocyanide insertion reactions have significantly expanded the scope and applicability of these imidoylative cross-couplings. This review highlights the advances made in this field over the past eight years.
Collapse
Affiliation(s)
- Jurriën W. Collet
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Thomas R. Roose
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
| | - Bram Weijers
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
| | - Bert U. W. Maes
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
- Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Urmonderlaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
6
|
Chen X, Zhang L, Wang Y, Qiu G, Liang Q, Zhou H. Copper-Catalyzed Tandem Radical Cyclization of 8-Ethynyl-1-naphthyl-amines for the Synthesis of 2 H-Benzo[ e][1,2]thiazine 1,1-Dioxides and its Fluorescence Properties. J Org Chem 2020; 85:12526-12534. [PMID: 32894946 DOI: 10.1021/acs.joc.0c01725] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A copper-catalyzed radical cascade dehydrogenative cyclization of N-tosyl-8-ethynyl-1-naphthylamines under air is described herein for the synthesis of thioazafluoranthenes. The reaction proceeds smoothly with high efficiency and a broad reaction scope. The product is indeed a new fluorophore and its photophysical properties are also investigated. Based on the results, we are pleased to find that the Stokes shift of amino-linked thioazafluoranthenes in dilute tetrahydrofuran is determined to be 143 nm (4830 cm-1).
Collapse
Affiliation(s)
- Xia Chen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Lianpeng Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Yuzhe Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Qinghui Liang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Hongwei Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| |
Collapse
|
7
|
Ling F, Song D, Chen L, Liu T, Yu M, Ma Y, Xiao L, Xu M, Zhong W. Syntheses of N-Alkyl 2-Arylindoles from Saturated Ketones and 2-Arylethynylanilines via Cu-Catalyzed Sequential Dehydrogenation/Aza-Michael Addition/Annulation Cascade. J Org Chem 2020; 85:3224-3233. [DOI: 10.1021/acs.joc.9b03091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Fei Ling
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dingguo Song
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Linlin Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tao Liu
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengyao Yu
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yan Ma
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lian Xiao
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Min Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weihui Zhong
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
8
|
Wang H, Wang Y, Han Y, Zhao W, Wang X. Humic acid as an efficient and reusable catalyst for one pot three-component green synthesis of 5-substituted 1 H-tetrazoles in water. RSC Adv 2020; 10:784-789. [PMID: 35494449 PMCID: PMC9047532 DOI: 10.1039/c9ra08523h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Humic acid is a non toxic, inexpensive, easily available high-molecular weight polymer. A simple and facile one pot three-component synthesis of 5-substituted 1H-tetrazoles from aldehydes, hydroxyamine hydrochloride and sodium azide using humic acid as an efficient catalyst in water is described. The method reported has several advantages such as high to excellent yields, easy work-up, mild reaction conditions, use of water as a green solvent, and a commercially available, nontoxic and reusable catalyst.
Collapse
Affiliation(s)
- Hongshe Wang
- College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences Baoji 721013 China
| | - Yichun Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine Xianyang 712046 China
| | - Yinfeng Han
- College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences Baoji 721013 China
| | - Weixing Zhao
- College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences Baoji 721013 China
| | - Xiaomei Wang
- College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences Baoji 721013 China
| |
Collapse
|
9
|
Fang S, Jiang G, Li M, Liu Z, Jiang H, Wu W. Palladium-catalyzed regioselective C–H alkynylation of indoles with haloalkynes: access to functionalized 7-alkynylindoles. Chem Commun (Camb) 2019; 55:13769-13772. [DOI: 10.1039/c9cc07263b] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A palladium-catalyzed exclusively selective alkynylation of indoles has been reported, affording concise access to 7-alkynylindoles from readily available starting materials.
Collapse
Affiliation(s)
- Songjia Fang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Guangbin Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Meng Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Zhenying Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Wanqing Wu
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
| |
Collapse
|