1
|
George M, Mindner J, Wittmer S, Knyazev DA, Werz DB. Double Strain-Release (3+3)-Cycloaddition: Lewis Acid Catalyzed Reaction of Bicyclobutane Carboxylates and Aziridines. Chemistry 2025; 31:e202404099. [PMID: 39624949 DOI: 10.1002/chem.202404099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
A (3+3)-cycloaddition to afford 2-azabiyclo[3.1.1]heptanes was realized by reacting highly strained aryl bicyclo[1.1.0]butane (BCBs) carboxylates with tosylated aziridines. Under Sc(OTf)3 catalysis the transformation proceeded smoothly under mild conditions to the corresponding bicyclic products bearing at the bridgeheads of the embedded four-membered ring aryl and ester moieties, respectively. This reaction is a rare example of a cycloaddition of two highly strained ring systems under Lewis acid catalysis. Mechanistic experiments provided insights into the reaction mechanism.
Collapse
Affiliation(s)
- Malini George
- Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104, Freiburg, Germany
| | - Jasper Mindner
- Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104, Freiburg, Germany
| | - Silas Wittmer
- Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104, Freiburg, Germany
| | - Daniil A Knyazev
- Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104, Freiburg, Germany
| | - Daniel B Werz
- Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104, Freiburg, Germany
| |
Collapse
|
2
|
Tan H, Thai P, Sengupta U, Deavenport IR, Kucifer CM, Powers DC. Metal-Free Aziridination of Unactivated Olefins via Transient N-Pyridinium Iminoiodinanes. JACS AU 2024; 4:4187-4193. [PMID: 39610755 PMCID: PMC11600189 DOI: 10.1021/jacsau.4c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 11/30/2024]
Abstract
We describe a metal-free aziridination of unactivated olefins to generate N-pyridinium aziridines. Subsequent cross-coupling affords N-aryl aziridines, and reductive depyridylation affords N-H aziridines. Kinetics experiments, based on a variable time normalization analysis (VTNA), indicate that aziridination proceeds via a highly electrophilic N-pyridinium iminoiodinane intermediate. These studies expand build-and-couple aziridine synthesis to unactivated olefins and introduce charge-enhanced electrophilicity into the chemistry of iminoiodinanes.
Collapse
Affiliation(s)
- Hao Tan
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Phong Thai
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Uddalak Sengupta
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Isaac R. Deavenport
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Cali M. Kucifer
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - David C. Powers
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
3
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
4
|
Janssen M, Frederichs T, Olaru M, Lork E, Hupf E, Beckmann J. Synthesis of a stable crystalline nitrene. Science 2024; 385:318-321. [PMID: 38870274 DOI: 10.1126/science.adp4963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Nitrenes are a highly reactive, yet fundamental, compound class. They possess a monovalent nitrogen atom and usually a short life span, typically in the nanosecond range. Here, we report on the synthesis of a stable nitrene by photolysis of the arylazide MSFluindN3 (1), which gave rise to the quantitative formation of the arylnitrene MSFluindN (2) (MSFluind is dispiro[fluorene-9,3'-(1',1',7',7'-tetramethyl-s-hydrindacen-4'-yl)-5',9''-fluorene]) that remains unchanged for at least 3 days when stored under argon atmosphere at room temperature. The extraordinary life span permitted the full characterization of 2 by single-crystal x-ray crystallography, electron paramagnetic resonance spectroscopy, and superconducting quantum interference device magnetometry, which supported a triplet ground state. Theoretical simulations suggest that in addition to the kinetic stabilization conferred by the bulky MSFluind aryl substituent, electron delocalization across the central aromatic ring contributes to the electron stabilization of 2.
Collapse
Affiliation(s)
- Marvin Janssen
- Institute of Inorganic Chemistry and Crystallography, Faculty of Biology and Chemistry, University of Bremen, Leobener Str. 7, D-28359 Bremen, Germany
| | - Thomas Frederichs
- Faculty of Geosciences, University of Bremen, Klagenfurther Str. 2-4, D-28359 Bremen, Germany
| | - Marian Olaru
- Institute of Inorganic Chemistry and Crystallography, Faculty of Biology and Chemistry, University of Bremen, Leobener Str. 7, D-28359 Bremen, Germany
| | - Enno Lork
- Institute of Inorganic Chemistry and Crystallography, Faculty of Biology and Chemistry, University of Bremen, Leobener Str. 7, D-28359 Bremen, Germany
| | - Emanuel Hupf
- Institute of Inorganic Chemistry and Crystallography, Faculty of Biology and Chemistry, University of Bremen, Leobener Str. 7, D-28359 Bremen, Germany
| | - Jens Beckmann
- Institute of Inorganic Chemistry and Crystallography, Faculty of Biology and Chemistry, University of Bremen, Leobener Str. 7, D-28359 Bremen, Germany
| |
Collapse
|
5
|
Huang Y, Zhu SY, He G, Chen G, Wang H. Synthesis of N-H Aziridines from Unactivated Olefins Using Hydroxylamine- O-Sulfonic Acids as Aminating Agent. J Org Chem 2024; 89:6263-6273. [PMID: 38652889 DOI: 10.1021/acs.joc.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Herein, we presented a practical methodology for the intermolecular aziridination of alkenes, using HOSA as the aminating agent, alongside pyridine or piperidine as the base, within HFIP solvent system. Notably, this approach showcases excellent reactivity, especially with nonactivated alkenes, and facilitates the transformation of various alkenes substrates, including mono-, di-, tri, and tetra-substituted alkenes, into aziridines with moderate to excellent yield. This method presents a promising avenue for synthesizing aziridines from a wide range of alkenes, featuring the benefits of straightforward operation, mild reaction conditions, extensive substrate compatibility, and scalability.
Collapse
Affiliation(s)
- Yi Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shi-Yang Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Mitchell J, Hussain WA, Bansode AH, O’Connor RM, Parasram M. Aziridination via Nitrogen-Atom Transfer to Olefins from Photoexcited Azoxy-Triazenes. J Am Chem Soc 2024; 146:9499-9505. [PMID: 38522088 PMCID: PMC11009954 DOI: 10.1021/jacs.3c14713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024]
Abstract
Herein, we report that readily accessible azoxy-triazenes can serve as nitrogen atom sources under visible light excitation for the phthalimido-protected aziridination of alkenes. This approach eliminates the need for external oxidants, precious transition metals, and photocatalysts, marking a departure from conventional methods. The versatility of this transformation extends to the selective aziridination of both activated and unactivated multisubstituted alkenes of varying electronic profiles. Notably, this process avoids the formation of competing C-H insertion products. The described protocol is operationally simple, scalable, and adaptable to photoflow conditions. Mechanistic studies support the idea that the photofragmentation of azoxy-triazenes results in the generation of a free singlet nitrene. Furthermore, a mild photoredox-catalyzed N-N cleavage of the protecting group to furnish the free aziridines is reported. Our findings contribute to the advancement of sustainable and practical methodologies for the synthesis of nitrogen-containing compounds, showcasing the potential for broader applications in synthetic chemistry.
Collapse
Affiliation(s)
- Joshua
K. Mitchell
- Department of Chemistry, New
York University, New York, New York 10003, United States
| | - Waseem A. Hussain
- Department of Chemistry, New
York University, New York, New York 10003, United States
| | - Ajay H. Bansode
- Department of Chemistry, New
York University, New York, New York 10003, United States
| | - Ryan M. O’Connor
- Department of Chemistry, New
York University, New York, New York 10003, United States
| | - Marvin Parasram
- Department of Chemistry, New
York University, New York, New York 10003, United States
| |
Collapse
|
7
|
Dam D, Lagerweij NR, Janmaat KM, Kok K, Bouwman E, Codée JDC. Organic Dye-Sensitized Nitrene Generation: Intermolecular Aziridination of Unactivated Alkenes. J Org Chem 2024; 89:3251-3258. [PMID: 38358354 PMCID: PMC10913034 DOI: 10.1021/acs.joc.3c02709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Aziridines are important structural motifs and intermediates, and several synthetic strategies for the direct aziridination of alkenes have been introduced. However, many of these strategies require an excess of activated alkene, suffer from competing side-reactions, have limited functional group tolerance, or involve precious transition metal-based catalysts. Herein, we demonstrate the direct aziridination of alkenes by combining sulfonyl azides as a triplet nitrene source with a catalytic amount of an organic dye functioning as photosensitizer. We show how the nature of the sulfonyl azide, in combination with the triplet-excited state energy of the photosensitizer, affects the aziridination yield and provide a mechanistic rationale to account for the observed dependence of the reaction yield on the nature of the organic dye and sulfonyl azide reagents. The optimized reaction conditions enable the aziridination of structurally diverse and complex alkenes, carrying various functional groups, with the alkene as the limiting reagent.
Collapse
Affiliation(s)
- Dennis Dam
- Leiden Institute of Chemistry, Universiteit
Leiden, Leiden 2333 CC, The Netherlands
| | - Nathan R. Lagerweij
- Leiden Institute of Chemistry, Universiteit
Leiden, Leiden 2333 CC, The Netherlands
| | - Katharina M. Janmaat
- Leiden Institute of Chemistry, Universiteit
Leiden, Leiden 2333 CC, The Netherlands
| | - Ken Kok
- Leiden Institute of Chemistry, Universiteit
Leiden, Leiden 2333 CC, The Netherlands
| | - Elisabeth Bouwman
- Leiden Institute of Chemistry, Universiteit
Leiden, Leiden 2333 CC, The Netherlands
| | - Jeroen D. C. Codée
- Leiden Institute of Chemistry, Universiteit
Leiden, Leiden 2333 CC, The Netherlands
| |
Collapse
|
8
|
Dequina HJ, Jones CL, Schomaker JM. Recent updates and future perspectives in aziridine synthesis and reactivity. Chem 2023; 9:1658-1701. [PMID: 37681216 PMCID: PMC10482075 DOI: 10.1016/j.chempr.2023.04.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
In this review, selected recent advances in the preparation and reactivity of aziridines using modern synthetic approaches are highlighted, while comparing these new strategies with more classical approaches. This critical analysis is designed to help identify current gaps in the field and is showcasing new and exciting opportunities to move the chemistry of aziridines forward in the future.
Collapse
Affiliation(s)
- Hillary J. Dequina
- Department of Chemistry, University of Wisconsin, 1101 N. University Avenue, Madison, WI 53706, USA
| | - Corey L. Jones
- Department of Chemistry, University of Wisconsin, 1101 N. University Avenue, Madison, WI 53706, USA
| | - Jennifer M. Schomaker
- Department of Chemistry, University of Wisconsin, 1101 N. University Avenue, Madison, WI 53706, USA
| |
Collapse
|
9
|
Aziridination Reactivity of a Manganese(II) Complex with a Bulky Chelating Bis(Alkoxide) Ligand. Molecules 2022; 27:molecules27185751. [PMID: 36144492 PMCID: PMC9505844 DOI: 10.3390/molecules27185751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Treatment of Mn(N(SiMe3)2)2(THF)2 with bulky chelating bis(alkoxide) ligand [1,1′:4′,1′′-terphenyl]-2,2′′-diylbis(diphenylmethanol) (H2[O-terphenyl-O]Ph) formed a seesaw manganese(II) complex Mn[O-terphenyl-O]Ph(THF)2, characterized by structural, spectroscopic, magnetic, and analytical methods. The reactivity of Mn[O-terphenyl-O]Ph(THF)2 with various nitrene precursors was investigated. No reaction was observed between Mn[O-terphenyl-O]Ph(THF)2 and aryl azides. In contrast, the treatment of Mn[O-terphenyl-O]Ph(THF)2 with iminoiodinane PhINTs (Ts = p-toluenesulfonyl) was consistent with the formation of a metal-nitrene complex. In the presence of styrene, the reaction led to the formation of aziridine. Combining varying ratios of styrene and PhINTs in different solvents with 10 mol% of Mn[O-terphenyl-O]Ph(THF)2 at room temperature produced 2-phenylaziridine in up to a 79% yield. Exploration of the reactivity of Mn[O-terphenyl-O]Ph(THF)2 with various olefins revealed (1) moderate aziridination yields for p-substituted styrenes, irrespective of the electronic nature of the substituent; (2) moderate yield for 1,1′-disubstituted α-methylstyrene; (3) no aziridination for aliphatic α-olefins; (4) complex product mixtures for the β-substituted styrenes. DFT calculations suggest that iminoiodinane is oxidatively added upon binding to Mn, and the resulting formal imido intermediate has a high-spin Mn(III) center antiferromagnetically coupled to an imidyl radical. This imidyl radical reacts with styrene to form a sextet intermediate that readily reductively eliminates the formation of a sextet Mn(II) aziridine complex.
Collapse
|
10
|
Xing Q, Jiang D, Zhang J, Guan L, Li T, Zhao Y, Di M, Chen H, Che C, Zhu Z. Combining visible-light induction and copper catalysis for chemo-selective nitrene transfer for late-stage amination of natural products. Commun Chem 2022; 5:79. [PMID: 36697627 PMCID: PMC9814389 DOI: 10.1038/s42004-022-00692-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/22/2022] [Indexed: 01/28/2023] Open
Abstract
Nitrene transfer chemistry is an effective strategy for introducing C-N bonds, which are ubiquitous in pharmaceuticals, agrochemicals and diverse bioactive natural products. The development of chemical methodology that can functionalize unique sites within natural products through nitrene transfer remains a challenge in the field. Herein, we developed copper catalyzed chemoselective allylic C-H amination and catalyst-free visible-light induced aziridination of alkenes through nitrene transfer. In general, both reactions tolerate a wide range of functional groups and occur with predictable regioselectivity. Furthermore, combination of these two methods enable the intermolecular chemo-selective late-stage amination of biologically active natural products, leading to C-H amination or C=C aziridination products in a tunable way. A series of control experiments indicate two-step radical processes were involved in both reaction systems.
Collapse
Affiliation(s)
- Qi Xing
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Ding Jiang
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Jiayin Zhang
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Liangyu Guan
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Ting Li
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yi Zhao
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Man Di
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Huangcan Chen
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Chao Che
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Zhendong Zhu
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
11
|
Feng J, Liu H, Yao Y, Lu CD. Synthesis of Enantioenriched Primary tert-Butanesulfonimidamides via Imination-Hydrazinolysis of N'- tert-Butanesulfinyl Amidines. J Org Chem 2022; 87:5005-5016. [PMID: 35275481 DOI: 10.1021/acs.joc.2c00095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first synthesis of primary tert-butanesulfonimidamides with high enantiopurity was realized by imination (or imination/N-functionalization) of enantioenriched N'-tert-butanesulfinyl amidines, followed by hydrazinolysis. N'-Sulfinyl amidines served as imination precursors during copper-catalyzed sulfonyl nitrene transfer or iodonitrene-based NH transfer. Further transformations allowed access to primary tert-butanesulfonimidamides with diverse substitutions on the nitrogen of S═N.
Collapse
Affiliation(s)
- Jie Feng
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hui Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yun Yao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chong-Dao Lu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| |
Collapse
|
12
|
Chandra D, Yadav AK, Singh V, Tiwari B, Jat JL. Fe(II)‐Catalyzed Synthesis of Unactivated Aziridines (N‐H/N‐Me) from Olefins Using
O
‐Arylsulfonyl Hydroxylamines. ChemistrySelect 2021. [DOI: 10.1002/slct.202102884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dinesh Chandra
- Department of Chemistry School of Physical and Decision Sciences Babasaheb Bhimrao Ambedkar University (A Central University) Lucknow India
| | - Ajay K. Yadav
- Department of Chemistry School of Physical and Decision Sciences Babasaheb Bhimrao Ambedkar University (A Central University) Lucknow India
| | - Vikram Singh
- Division of Molecular Synthesis and Drug Discovery Centre of Biomedical Research SGPGIMS Campus Raebareli Road Lucknow 226014 India
| | - Bhoopendra Tiwari
- Division of Molecular Synthesis and Drug Discovery Centre of Biomedical Research SGPGIMS Campus Raebareli Road Lucknow 226014 India
| | - Jawahar L. Jat
- Department of Chemistry School of Physical and Decision Sciences Babasaheb Bhimrao Ambedkar University (A Central University) Lucknow India
| |
Collapse
|
13
|
Minakata S, Kiyokawa K, Nakamura S. Transition-Metal-Free Aziridination of Alkenes with Sulfamate Esters Using tert-Butyl Hypoiodite. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Rotella ME, Dyer RMB, Hilinski MK, Gutierrez O. Mechanism of Iminium Salt-Catalyzed C(sp 3)-H Amination: Factors Controlling Hydride Transfer versus H-Atom Abstraction. ACS Catal 2020; 10:897-906. [PMID: 34113476 DOI: 10.1021/acscatal.9b03588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbon-nitrogen bonds are extremely prevalent in pharmaceuticals, natural products, and other biologically relevant molecules such as nucleic acids and proteins. Intermolecular amination of C(sp3)-H bonds by catalytic nitrene transfer is a promising method for forging C-N bonds. An organocatalytic approach to nitrene transfer by way of an iminium salt offers a site-selective method for C(sp3)-H amination. Understanding of this amination mechanism including the nature of the relevant intermediates and the factors controlling the mechanism of the N-H bond formation step would aid in the design of catalysts and C(sp3)-H amination methods. In this work, the mechanism of the iminium salt-catalyzed C(sp3)-H amination via nitrene transfer was elucidated computationally using quantum mechanical methods and molecular dynamics simulations. Dispersion-corrected density functional theory (DFT) calculations provide support for an open singlet biradical species in equilibrium with the lower energy triplet species. Calculations further reveal that while the singlet biradical species undergoes N-H bond formation by a hydride transfer process, the triplet species forms the N-H bond by H-atom abstraction. Molecular dynamics (MD) simulations rule out the possibility of a fast rebound of the carbon substrate following N-H bond formation. A predictive model for mode of activation and site-selectivity that is consistent with experimental observations is presented.
Collapse
Affiliation(s)
- Madeline E Rotella
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742-4454, United States
| | - Robert M B Dyer
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904-4319, United States
| | - Michael K Hilinski
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904-4319, United States
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742-4454, United States
| |
Collapse
|