1
|
Tian C, Li H, Liu T, Xu J, Guo H, Zhang X, Yang J, Ning J, Peng C, Jin P, Cui L, Gao Y. Concise Synthesis and Biological Evaluation of the Pyrrolo[4,3,2- de]quinoline Core of the Lymphostin Family. J Org Chem 2024; 89:16038-16042. [PMID: 39439263 DOI: 10.1021/acs.joc.4c02038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The efficient synthesis of the pyrrolo[4,3,2-de]quinoline core of the lymphostin family (compound 1) has been accomplished in 7 steps and 18.6% overall yield, providing an efficient method for the total synthesis and structural modification of the lymphostin family. Compound 1 showed potent inhibitory activities against PI3K/mTOR in the nanomolar range and activity against human colorectal cancer cell lines comparable to that of oxaliplatin, which could be recognized as a novel lead compound for cancer therapy.
Collapse
Affiliation(s)
- Chengsen Tian
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Hongmin Li
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Tingting Liu
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jiwei Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250013, China
| | - Haojie Guo
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Xinyuan Zhang
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Jiaojiao Yang
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Jian Ning
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Cheng Peng
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Peng Jin
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Lechao Cui
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Yuqi Gao
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
2
|
Xie X, Huang H, Fan Y, Luo Y, Pang Q, Li X, Huang W. Assembly of spirocyclic pyrazolone-pyrrolo[4,3,2- de]quinoline skeleton via cascade [1,5] hydride transfer/cyclization by C(sp 3)-H functionalization. Org Biomol Chem 2023; 21:7300-7304. [PMID: 37667627 DOI: 10.1039/d3ob01063e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Herein, a highly efficient, scalable, and cascade [1,5] hydride transfer/cyclization method for constructing unique spirocyclic pyrazolone-pyrrolo[4,3,2-de]quinoline structures via C(sp3)-H functionalization is achieved, using pyrazolones and oxindoles attached to C4 amines. This strategy represents a limited approach utilizing C-H activation to construct spirocyclic pyrazolone scaffolds with moderate to excellent reaction performance.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - He Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yu Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yuan Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Wang J, Chen Y, Du W, Chen N, Fu K, He Q, Shao L. Green oxidative rearrangement of indoles using halide catalyst and hydrogen peroxide. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Bartoccini F, Regni A, Retini M, Piersanti G. Concise catalytic asymmetric synthesis of (R)-4-amino Uhle's ketone. Org Biomol Chem 2021; 19:2932-2940. [PMID: 33885552 DOI: 10.1039/d1ob00353d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A practical and asymmetric synthesis of (R)-4-amino-5-oxo-1,3,4,5-tetrahydrobenz[cd]indole, an enantiopure framework shared by most ergot alkaloids, was accomplished. Our method involves a Rh(i)-catalyzed 6-exo-trig intramolecular cyclization of an appropriate 4-pinacolboronic ester d-tryptophan aldehyde followed by the oxidation of the resulting secondary benzylic alcohol with a Cu(i)-ABNO catalyst and final deprotection under acidic conditions. This new procedure offers significant advantages over previous synthetic approaches, including brevity, mild reaction conditions, preservation of chiral integrity, and high overall yield and avoids the use of stoichiometric amounts of strongly basic and pyrophoric organometallic reagents.
Collapse
Affiliation(s)
- Francesca Bartoccini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy.
| | | | | | | |
Collapse
|
5
|
Wen C, Zhong R, Qin Z, Zhao M, Li J. Regioselective remote C5 cyanoalkoxylation and cyanoalkylation of 8-aminoquinolines with azobisisobutyronitrile. Chem Commun (Camb) 2020; 56:9529-9532. [PMID: 32687138 DOI: 10.1039/d0cc00014k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficient regioselective C-H cyanoalkoxylation and cyanoalkylation of 8-aminoquinoline derivatives at the C5 position have been achieved under O2 and N2 atmospheres, respectively. Using 2,2'-azobisisobutyronitrile (AIBN) as a radical precursor, the protocols afforded the corresponding products in moderate to good yields with broad substrate generality through Cu(OAc)2 or NiSO4 catalysis. Furthermore, the single electron transfer (SET) mechanism was proposed via a radical coupling pathway.
Collapse
Affiliation(s)
- Chunxia Wen
- Department of Organic Chemistry, College of Chemistry, Jilin University, Jiefang Road 2519, Changchun, 130023, China.
| | - Ronglin Zhong
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China
| | - Zengxin Qin
- Department of Organic Chemistry, College of Chemistry, Jilin University, Jiefang Road 2519, Changchun, 130023, China.
| | - Mengfei Zhao
- Department of Organic Chemistry, College of Chemistry, Jilin University, Jiefang Road 2519, Changchun, 130023, China.
| | - Jizhen Li
- Department of Organic Chemistry, College of Chemistry, Jilin University, Jiefang Road 2519, Changchun, 130023, China.
| |
Collapse
|