1
|
Park S, Myeong IS, Ham WH. Recent advances in the total synthesis of polyhydroxylated alkaloids via chiral oxazines. Org Biomol Chem 2024; 22:894-926. [PMID: 38230703 DOI: 10.1039/d3ob01624b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
This review summarizes recently established methodologies developed for the enantioselective and diastereoselective synthesis of chiral 1,3-oxazines. These compounds are of interest as advanced synthetic intermediates in the total synthesis of structurally complex and biologically active polyhydroxylated alkaloids such as (+)-1-deoxynojirimycin, (-)-anisomycin, (+)-castanospermine, (+)-casuarine, (-)-conduramine F-1, (-)-sphingofungin B, Neu5Ac methyl ester, and other natural products. The devised synthetic approach aims to offer a direct, efficient, and adaptable method for obtaining both pure enantiomers and pure diastereomers. It revolves around utilizing chiral building blocks like syn,syn-, syn,syn,anti-, syn,anti-, syn,anti,syn-, anti,syn-, anti,syn,syn-, and anti,syn,anti-oxazines. By integrating oxazine chemistry with established and innovative transformations, this approach enabled the synthesis of 30 polyhydroxylated amines across various studies conducted between 2007 and 2022.
Collapse
Affiliation(s)
- Seokhwi Park
- YS Life Science Co., Ltd, 207, Sujeong-ro, Jangan-myeon, Hwaseong-si, Gyeonggi-do, 18581, Republic of Korea.
| | - In-Soo Myeong
- College of Pharmacy, Daegu Catholic University, 13-13, Hayang-ro, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do, 38430, Republic of Korea.
| | - Won-Hun Ham
- YS Life Science Co., Ltd, 207, Sujeong-ro, Jangan-myeon, Hwaseong-si, Gyeonggi-do, 18581, Republic of Korea.
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
2
|
Park GM, Kong SJ, Park JH, Kang JE, An SH, Kim HS, Kim IS, Boggu PR, Jung YH. Synthesis and evaluation of ent-Conduramine C-1 derivatives as α-glucosidase inhibitors via CSI-mediated amination reaction. Carbohydr Res 2023; 524:108746. [PMID: 36682231 DOI: 10.1016/j.carres.2023.108746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Concise synthesis of ent-conduramine C-1 and its derivatives has been achieved by using commercially available d-ribose. The key steps in the synthesis are regioselective and diastereoselective amination of polybenzyl ethers by chlorosulfonyl isocyanate (CSI), chelation-controlled carbonyl addition, and intramolecular olefin metathesis. All of the synthesized compounds were evaluated for inhibitory activity against α-glucosidase. The derivatives 18 (IC50 = 0.65 ± 0.03 mM) and 19 (IC50 = 0.26 ± 0.01 mM) were identified to be more potent than well-known α-glucosidase inhibitor acarbose (IC50 = 1.05 ± 0.17 mM) as a positive control.
Collapse
Affiliation(s)
- Gi Min Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sun Ju Kong
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Ji Eun Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sung Hwan An
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Pulla Reddy Boggu
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Young Hoon Jung
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
3
|
Munawar S, Zahoor AF, Ali S, Javed S, Irfan M, Irfan A, Kotwica-Mojzych K, Mojzych M. Mitsunobu Reaction: A Powerful Tool for the Synthesis of Natural Products: A Review. Molecules 2022; 27:6953. [PMID: 36296545 PMCID: PMC9609662 DOI: 10.3390/molecules27206953] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 08/13/2023] Open
Abstract
The Mitsunobu reaction plays a vital part in organic chemistry due to its wide synthetic applications. It is considered as a significant reaction for the interconversion of one functional group (alcohol) to another (ester) in the presence of oxidizing agents (azodicarboxylates) and reducing agents (phosphines). It is a renowned stereoselective reaction which inverts the stereochemical configuration of end products. One of the most important applications of the Mitsunobu reaction is its role in the synthesis of natural products. This review article will focus on the contribution of the Mitsunobu reaction towards the total synthesis of natural products, highlighting their biological potential during recent years.
Collapse
Affiliation(s)
- Saba Munawar
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shafaqat Ali
- College of Agriculture and Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sadia Javed
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Katarzyna Kotwica-Mojzych
- Laboratory of Experimental Cytology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3-go Maja 54, 08-110 Siedlce, Poland
| |
Collapse
|
4
|
Barotcu AZ, Karanfil A, Şahin E, Kelebekli L. Stereoselective synthesis of novel bis-homoinositols with bicyclo[4.2.0]octane motifs. Carbohydr Res 2022; 519:108611. [PMID: 35716487 DOI: 10.1016/j.carres.2022.108611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
Starting from cyclooctatetraene, bis-homoconduritols with cis-inositol and allo-inositol (or bicyclo[4.2.0]octane motif) structures were synthesized. Photooxygenation of trans-7,8-dibromo-bicyclo[4.2.0]octa-2,4-diene allowed the preparation of tricyclic endoperoxide. The compound diacetate was obtained by reduction of endoperoxide with thiourea followed by acetylation reaction. Removal of halides with zinc dust in acetic acid yielded the dien-diacetate, a key compound of the designed molecules. OsO4 oxidation of diendiacetate followed by acetylation gave the corresponding hexaacetates. Finally, the novel desired bis-homoinositols were obtained in high yield by the ammonolysis of acetate groups. The structures of all synthesized compounds were characterized by spectroscopic methods.
Collapse
Affiliation(s)
- Ayşenur Zeren Barotcu
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, 52200, Ordu, Turkey
| | - Abdullah Karanfil
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, 52200, Ordu, Turkey
| | - Ertan Şahin
- Department of Chemistry, Faculty of Sciences, Ataturk University, 25240, Erzurum, Turkey
| | - Latif Kelebekli
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, 52200, Ordu, Turkey.
| |
Collapse
|
5
|
Ticli V, Zhao Z, Du L, Kornienko A, Hudlicky T. Synthesis and biological evaluation of 10-benzyloxy-Narciclasine. Tetrahedron 2021; 101. [PMID: 35058668 DOI: 10.1016/j.tet.2021.132505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A chemoenzymatic convergent synthesis of 10-benzyloxy narciclasine from bromobenzene was accomplished in 16 steps. The key transformations included toluene dioxygenase-mediated hydroxylation, nitroso Diels-Alder reaction and intramolecular Heck cyclization. The unnatural derivative of narciclasine was subjected to biological evaluation and its activity was compared to other C-10 and C-7 compounds prepared previously.
Collapse
Affiliation(s)
- Vincenzo Ticli
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2R 3A1, Canada
| | - Zhenze Zhao
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Liqin Du
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Tomas Hudlicky
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2R 3A1, Canada
| |
Collapse
|
6
|
Narayana C, Khanna A, Kumari P, Sagar R. Total Syntheses of Kirkamide and
N
‐acetyl
ent
‐Conduramine B‐1. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chintam Narayana
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi Uttar Pradesh 221005 India
| | - Ashish Khanna
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi Uttar Pradesh 221005 India
| | - Priti Kumari
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi Uttar Pradesh 221005 India
| | - Ram Sagar
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi Uttar Pradesh 221005 India
| |
Collapse
|
7
|
Yan X, Zhao P, Liang H, Xie H, Jiang J, Gou S, Wang J. Rhodium(III)-Catalyzed Asymmetric C–H Activation of N-Methoxybenzamide with Quinone and Its Application in the Asymmetric Synthesis of a Dihydrolycoricidine Analogue. Org Lett 2020; 22:3219-3223. [DOI: 10.1021/acs.orglett.0c01002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoqiang Yan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Peng Zhao
- School of Chemistry and Chemical Engineering, State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Hao Liang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Hui Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jijun Jiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Shaohua Gou
- School of Chemistry and Chemical Engineering, State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
8
|
|