1
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
2
|
Wang CS, Xu Y, Wang SP, Zheng CL, Wang G, Sun Q. Recent advances in selective mono-/dichalcogenation and exclusive dichalcogenation of C(sp 2)-H and C(sp 3)-H bonds. Org Biomol Chem 2024; 22:645-681. [PMID: 38180073 DOI: 10.1039/d3ob01847d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic intermediates. Direct chalcogenation of C-H bonds has evolved as a step- and atom-economical method for the synthesis of chalcogen-bearing compounds. Nevertheless, direct C-H chalcogenation severely lags behind C-C, C-N and C-O bond formations. Moreover, compared with the C-H monochalcogenation, reports of selective mono-/dichalcogenation and exclusive dichalcogenation of C-H bonds are relatively scarce. The past decade has witnessed significant advancements in selective mono-/dichalcogenation and exclusive dichalcogenation of various C(sp2)-H and C(sp3)-H bonds via transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches. In light of the significance of both mono- and dichalcogen-containing compounds in various fields of chemical science and the critical issue of chemoselectivity in organic synthesis, the present review systematically summarizes the advances in these research fields, with a special focus on elucidating scopes and mechanistic aspects. Moreover, the synthetic limitations, applications of some of these processes, the current challenges and our own perspectives on these highly active research fields are also discussed. Based on the substrate types and C-H bonds being chalcogenated, the present review is organized into four sections: (1) transition-metal-catalyzed/mediated chelation-assisted selective C-H mono-/dichalcogenation or exclusive dichalcogenation of (hetero)arenes; (2) directing group-free selective C-H mono-/dichalcogenation or exclusive dichalcogenation of electron-rich (hetero)arenes; (3) C(sp3)-H dichalcogenation; (4) dichalcogenation of both C(sp2)-H and C(sp3)-H bonds. We believe the present review will serve as an invaluable resource for future innovations and drug discovery.
Collapse
Affiliation(s)
- Chang-Sheng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Yuan Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371, Singapore.
| | - Shao-Peng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Chun-Ling Zheng
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Guowei Wang
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Qiao Sun
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| |
Collapse
|
3
|
Beletskaya IP, Ananikov VP. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chem Rev 2022; 122:16110-16293. [DOI: 10.1021/acs.chemrev.1c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina P. Beletskaya
- Chemistry Department, Lomonosov Moscow State University, Vorob’evy gory, Moscow 119899, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
4
|
Tomar R, Kumar A, Dalal A, Bhattacharya D, Singh P, Arulananda Babu S. Expanding the utility of inexpensive pyridine‐N‐oxide directing group for the site‐selective sp2/sp3γ‐C‐H and sp2δ‐C‐H functionalization of carboxamides. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Radha Tomar
- Indian Institute of Science Education and Research Mohali Chemical Sciences INDIA
| | - Amit Kumar
- Indian Institute of Science Education and Research Mohali Chemical Sciences INDIA
| | - Arup Dalal
- Indian Institute of Science Education and Research Mohali Chemical Sciences INDIA
| | | | - Prabhakar Singh
- Indian Institute of Science Education and Research Mohali Chemical Sciences INDIA
| | - Srinivasarao Arulananda Babu
- Indian Institute of Science Education and Research Mohali Department of Chemical Sciences Knowledge City, Sector 81, SAS Nagar,Mohali, Manauli P.O., 140306 Mohali INDIA
| |
Collapse
|
5
|
Han DY, Liu XP, Li RP, Xu DZ. Aerobic Cross-Dehydrogenative Coupling Reactions for Selective Mono- and Dithiolation of Phenols. J Org Chem 2021; 86:10166-10176. [PMID: 34252273 DOI: 10.1021/acs.joc.1c00898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly efficient strategy for the direct thiolation of phenols under transition metal-free and solvent-free conditions has been developed. These reactions are operationally simple with employing air (molecular oxygen) as an ideal oxidant and can selectively provide mono- and dithiolation products in good to excellent yields under basic conditions. The reaction tolerates a broad range of aryl thiols and arenes and is especially applicable for large-scale synthesis.
Collapse
Affiliation(s)
- Dong-Yang Han
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao-Peng Liu
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ruo-Pu Li
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Da-Zhen Xu
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Zhang H, Wang H, Jiang Y, Cao F, Gao W, Zhu L, Yang Y, Wang X, Wang Y, Chen J, Feng Y, Deng X, Lu Y, Hu X, Li X, Zhang J, Shi T, Wang Z. Recent Advances in Iodine-Promoted C-S/N-S Bonds Formation. Chemistry 2020; 26:17289-17317. [PMID: 32470225 DOI: 10.1002/chem.202001414] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/27/2020] [Indexed: 12/19/2022]
Abstract
Sulfur-containing scaffold, as a ubiquitous structural motif, has been frequently used in natural products, bioactive chemicals and pharmaceuticals, particularly C-S/N-S bonds are indispensable in many biological important compounds and pharmaceuticals. Development of mild and general methods for C-S/N-S bonds formation has great significance in modern research. Iodine and its derivatives have been recognized as inexpensive, environmentally benign and easy-handled catalysts or reagents to promote the construction of C-S/N-S bonds under mild reaction conditions, with good regioselectivities and broad substrate scope. Especially based on this, several new strategies, such as oxidation relay strategy, have been greatly developed and accelerated the advancement of this field. This review focuses on recent advances in iodine and its derivatives promoted hybridized C-S/N-S bonds formation. The features and mechanisms of corresponding reactions are summarized and the results of some cases are compared with those of previous reports. In addition, the future of this domain is discussed.
Collapse
Affiliation(s)
- Honghua Zhang
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Huihong Wang
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yi Jiang
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Fei Cao
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Weiwei Gao
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Longqing Zhu
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Yuhang Yang
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Xiaodong Wang
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Yongqiang Wang
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Jinhong Chen
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Yiyue Feng
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Xuemei Deng
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Yingmei Lu
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Xiangxiang Li
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Juan Zhang
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China.,State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| |
Collapse
|
7
|
I
2
‐Promoted Direct C−H Sulfenylation of Isoquinolin‐1(2
H
)‐ones with Sulfonyl Chlorides. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Yang Y, Cao F, Yao L, Shi T, Tang B, Kuninobu Y, Wang Z. C-N and C-O Bond Formation in Copper-Catalyzed/Mediated sp 3 C-H Activation: Mechanistic Studies from Experimental and Computational Aspects. J Org Chem 2020; 85:9713-9726. [PMID: 32678601 DOI: 10.1021/acs.joc.0c01038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mechanistic studies on Cu-catalyzed/mediated sp3 C-H amidation and acetoxylation are investigated from experimental and computational aspects. The concerted metalation-deprotonation (CMD) mechanism rather than a radical-involved pathway is proved to occur in amidation and acetoxylation reactions, and this is the rare example of the CMD mechanism involved in the more challenging sp3 C-H activations. Theoretical calculations demonstrated that CMD is the rate-determining step either for methylic or benzylic positions in amidation and acetoxylation reactions, and intermolecular nucleophilic addition of acetate anions is more favorable than the ring opening of β-lactams and intramolecular acetoxylation. These mechanistic studies on the divergent and condition-dependent product formation are critical for developing Cu-promoted C-H functionalization via the CMD mechanism.
Collapse
Affiliation(s)
- Yuhang Yang
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, Gansu, China
| | - Fei Cao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Linbin Yao
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, The University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, Gansu, China
| | - Bencan Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, The University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, Gansu, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, Gansu, China
| |
Collapse
|
9
|
Kajiwara R, Takamatsu K, Hirano K, Miura M. Copper-Mediated Regioselective C–H Sulfenylation and Selenation of Phenols with Phenanthroline Bidentate Auxiliary. Org Lett 2020; 22:5915-5919. [DOI: 10.1021/acs.orglett.0c02012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rikuo Kajiwara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazutaka Takamatsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|