1
|
Doraghi F, Aghanour Ashtiani MM, Ameli M, Larijani B, Mahdavi M. Transition Metal-Catalyzed C-H Activation/Functionalization of 8-Methylquinolines. CHEM REC 2024; 24:e202400116. [PMID: 39422078 DOI: 10.1002/tcr.202400116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/17/2024] [Indexed: 10/19/2024]
Abstract
8-Methylquinoline is regarded as an ideal substrate to participate in diversely C(sp3)-H functionalization reactions. The presence of the chelating nitrogen atom enables 8-methylquinoline to easily form cyclometallated complexes with various transition metals, leading to the selective synthesis of functionalized quinolines. Considering the great importance of quinoline cores in medicinal chemistry, in this review article, we have covered the publications related to the C-H activation and functionalization of 8-methylquinoline under transition metal catalysis during the last decade.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Aghanour Ashtiani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ameli
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Kumar R, Dohi T, Zhdankin VV. Organohypervalent heterocycles. Chem Soc Rev 2024; 53:4786-4827. [PMID: 38545658 DOI: 10.1039/d2cs01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This review summarizes the structural and synthetic aspects of heterocyclic molecules incorporating an atom of a hypervalent main-group element. The term "hypervalent" has been suggested for derivatives of main-group elements with more than eight valence electrons, and the concept of hypervalency is commonly used despite some criticism from theoretical chemists. The significantly higher thermal stability of hypervalent heterocycles compared to their acyclic analogs adds special features to their chemistry, particularly for bromine and iodine. Heterocyclic compounds of elements with double bonds are not categorized as hypervalent molecules owing to the zwitterionic nature of these bonds, resulting in the conventional 8-electron species. This review is focused on hypervalent heterocyclic derivatives of nonmetal main-group elements, such as boron, silicon, nitrogen, carbon, phosphorus, sulfur, selenium, bromine, chlorine, iodine(III) and iodine(V).
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, J C Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, 121006, Haryana, India.
| | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, 1038 University Drive, 126 HCAMS University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
| |
Collapse
|
3
|
Antoniou IM, Ioannou N, Panagiotou N, Georgiades SN. LED-induced Ru-photoredox Pd-catalyzed C-H arylation of (6-phenylpyridin-2-yl)pyrimidines and heteroaryl counterparts. RSC Adv 2024; 14:12179-12191. [PMID: 38628490 PMCID: PMC11019410 DOI: 10.1039/d4ra02173h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
N-heterocycles are essential building blocks and scaffolds in medicinal chemistry. A Pd-catalyzed, Ru-photoredox-mediated C-H arylation is applied herein, for converting a series of functionality-inclusive (6-phenylpyridin-2-yl)pyrimidines to single arylated derivatives, using phenyldiazonium tetrafluoroborate as aryl source. This green chemistry-compliant transformation is induced by LED light. The drug-like modular substrates are constructed via combination of Biginelli multi-component condensation and Suzuki C-C cross-coupling, in order to strategically install, adjacent to the Ph-ring intended to undergo C-H arylation, a (6-pyridin-2-yl)pyrimidine that plays the role of a chelating directing moiety for the C-H arylation catalyst. The scope has been demonstrated on a series of 26 substrates, comprising diverse Ph-ring substituents and substitution patterns, as well as with 13 different aryl donors. Substrates in which the Ph-ring (arylation acceptor) was replaced by an electron-rich heteroaryl counterpart (2-/3-thiophene or -benzofuran) have also been examined and found to undergo arylation regioselectively. End-product conformations afford interesting motifs for occupying 3D chemical space, as implied by single-crystal X-ray diffraction, which has allowed the elucidation of six structures of aryl derivatives and one of an unprecedented pyrimidine-pyridine-benzofuran carbopalladated complex, believed to be a C-H activation derivative.
Collapse
Affiliation(s)
- Ioakeim M Antoniou
- Department of Chemistry, University of Cyprus 1 Panepistimiou Avenue, Aglandjia 2109 Nicosia Cyprus
| | - Natalia Ioannou
- Department of Chemistry, University of Cyprus 1 Panepistimiou Avenue, Aglandjia 2109 Nicosia Cyprus
| | - Nikos Panagiotou
- Department of Chemistry, University of Cyprus 1 Panepistimiou Avenue, Aglandjia 2109 Nicosia Cyprus
| | - Savvas N Georgiades
- Department of Chemistry, University of Cyprus 1 Panepistimiou Avenue, Aglandjia 2109 Nicosia Cyprus
| |
Collapse
|
4
|
Sihag M, Soni R, Rani N, Kinger M, Kumar Aneja D. Recent Synthetic Applications of Hypervalent Iodine Reagents. A Review in Three Installments: Installment II. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2114236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Monika Sihag
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Rinku Soni
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Neha Rani
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Mayank Kinger
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Deepak Kumar Aneja
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| |
Collapse
|
5
|
Palladium-Catalyzed Organic Reactions Involving Hypervalent Iodine Reagents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123900. [PMID: 35745020 PMCID: PMC9230104 DOI: 10.3390/molecules27123900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 01/13/2023]
Abstract
The chemistry of polyvalent iodine compounds has piqued the interest of researchers due to their role as important and flexible reagents in synthetic organic chemistry, resulting in a broad variety of useful organic molecules. These chemicals have potential uses in various functionalization procedures due to their non-toxic and environmentally friendly properties. As they are also strong electrophiles and potent oxidizing agents, the use of hypervalent iodine reagents in palladium-catalyzed transformations has received a lot of attention in recent years. Extensive research has been conducted on the subject of C—H bond functionalization by Pd catalysis with hypervalent iodine reagents as oxidants. Furthermore, the iodine(III) reagent is now often used as an arylating agent in Pd-catalyzed C—H arylation or Heck-type cross-coupling processes. In this article, the recent advances in palladium-catalyzed oxidative cross-coupling reactions employing hypervalent iodine reagents are reviewed in detail.
Collapse
|
6
|
Zhang ML, Zhang XL, Guo RL, Wang MY, Zhao BY, Yang JH, Jia Q, Wang YQ. Switchable, Reagent-Controlled C(sp 3)-H Selective Iodination and Acetoxylation of 8-Methylquinolines. J Org Chem 2022; 87:5730-5743. [PMID: 35471034 DOI: 10.1021/acs.joc.2c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient Pd-catalyzed C(sp3)-H selective iodination of 8-methylquinolines is reported herein for the first time. Because of the versatility of organic iodides, the method offers a facile access to various C8-substituted quinolines. By slightly switching the reaction conditions, an efficient C(sp3)-H acetoxylation of 8-methylquinolines has also been enabled. Both approaches feature mild reaction conditions, good tolerance of functional groups, and a broad substrate scope.
Collapse
Affiliation(s)
- Ming-Lu Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xing-Long Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Rui-Li Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Meng-Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Bao-Yin Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Jin-Hui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Yinchuan 750021, P. R. China
| | - Qiong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
7
|
Winterson B, Patra T, Wirth T. Hypervalent Bromine(III) Compounds: Synthesis, Applications, Prospects. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1675-8404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractHypervalent compounds play a prominent role in homogeneous oxidation catalysis. Despite the higher reactivity of hypervalent bromine compounds when compared to their isoelectronic iodine analogues, the corresponding λ3-bromanes are much less explored. This can be attributed to the discernible lack of convenient strategies for their synthesis. This short review highlights the available methods for the synthesis of various organo-λ3-bromanes, with a major focus on the recent developments and reactivities in the last few years. Additionally, limitations and future prospects of hypervalent bromine chemistry are discussed.1 Introduction2 Diaryl-λ3-bromanes3 Dialkyl-λ3-bromanes4 Dihetero-λ3-bromanes5 Alkenyl-λ3-bromanes6 Alkynyl-λ3-bromanes7 Conclusion and Prospects
Collapse
|
8
|
Guo Z, Hu F, Lei X. Synthesis of 8-Methyltetrahydroquinoline derivatives functionalized at C-2: a one-pot tandem approach. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2034881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zhifo Guo
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX, USA
| | - Feng Hu
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX, USA
| | - Xiangyang Lei
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX, USA
| |
Collapse
|
9
|
Yang F, Wang X, Zhao W, Yu F, Yu Z. Hypervalent Iodine(III)-Promoted C3-H Regioselective Halogenation of 4-Quinolones under Mild Conditions. ACS OMEGA 2021; 6:34044-34055. [PMID: 34926952 PMCID: PMC8675166 DOI: 10.1021/acsomega.1c05455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
A simple and practical protocol for the C3-H regioselective halogenation of 4-quinolones by the action of potassium halide salt and PIFA/PIDA in good to excellent yields was developed. The current approach provides feasible access to the diversity of C3-halgenated 4-quinolones at room temperature with high regioselectivity and good functional group tolerance, from which bioactive compounds can be easily constructed. Moreover, the current method featured eco-friendly, operational convenience and is suitable for halogenation in a gram scale of 4-quinolones in water without sacrificing yields.
Collapse
Affiliation(s)
- Fang Yang
- The
Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic
Micro-organism, College of Life Science, Hebei Agriculture University, Baoding, Hebei 071001, People’s Republic of China
| | - Xiaoqing Wang
- Colleges
of Science, Hebei Agriculture University, Baoding, Hebei 071001, People’s Republic
of China
| | - Wenzhuo Zhao
- The
Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic
Micro-organism, College of Life Science, Hebei Agriculture University, Baoding, Hebei 071001, People’s Republic of China
| | - Fei Yu
- The
Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic
Micro-organism, College of Life Science, Hebei Agriculture University, Baoding, Hebei 071001, People’s Republic of China
| | - Zhengsen Yu
- The
Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic
Micro-organism, College of Life Science, Hebei Agriculture University, Baoding, Hebei 071001, People’s Republic of China
| |
Collapse
|
10
|
Shetgaonkar SE, Singh FV. Hypervalent Iodine Reagents in Palladium-Catalyzed Oxidative Cross-Coupling Reactions. Front Chem 2020; 8:705. [PMID: 33134246 PMCID: PMC7553084 DOI: 10.3389/fchem.2020.00705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/09/2020] [Indexed: 01/12/2023] Open
Abstract
Hypervalent iodine compounds are valuable and versatile reagents in synthetic organic chemistry, generating a diverse array of useful organic molecules. Owing to their non-toxic and environmentally friendly features, these reagents find potential applications in various oxidative functionalization reactions. In recent years, the use of hypervalent iodine reagents in palladium-catalyzed transformations has been widely studied as they are strong electrophiles and powerful oxidizing agents. For instance, extensive work has been carried out in the field of C–H bond functionalization via Pd-catalysis using hypervalent iodine reagents as oxidants. In addition, nowadays, iodine(III) reagents have been frequently employed as arylating agents in Pd-catalyzed C–H arylation or Heck-type cross-coupling reactions. In this review, recent advancements in the area of palladium-catalyzed oxidative cross-coupling reactions using hypervalent iodine reagents are summarized in detail.
Collapse
Affiliation(s)
- Samata E Shetgaonkar
- Chemistry Division, School of Advanced Science, Vellore Institute of Technology, Chennai, India
| | - Fateh V Singh
- Chemistry Division, School of Advanced Science, Vellore Institute of Technology, Chennai, India
| |
Collapse
|