1
|
Volkova Y, Zavarzin I. Synthesis of Phosphorus(V)-Substituted Six-Membered N-Heterocycles: Recent Progress and Challenges. Molecules 2023; 28:molecules28062472. [PMID: 36985443 PMCID: PMC10054050 DOI: 10.3390/molecules28062472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Heterocycles functionalized with pentavalent phosphorus are of great importance since they include a great variety of biologically active compounds and pharmaceuticals, advanced materials, and valuable reactive intermediates for organic synthesis. Significant progress in synthesis of P(O)R2-substituted six-membered heterocycles has been made in the past decade. This review covers the synthetic strategies towards aromatic monocyclic six-membered N-heterocycles, such as pyridines, pyridazines, pyrimidines, and pyrazines bearing phosphonates and phosphine oxides, which were reported from 2012 to 2022.
Collapse
|
2
|
Mishra P, Shruti I, Kant R, Thakur TS, Kumar A, Rastogi N. Visible Light Organo‐Photocatalytic Synthesis of 3‐Imidazolines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Poornima Mishra
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226 031 Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| | - Ipsha Shruti
- Biochemistry & Structural Biology Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226031 Lucknow India
| | - Ruchir Kant
- Biochemistry & Structural Biology Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226031 Lucknow India
| | - Tejender S. Thakur
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
- Biochemistry & Structural Biology Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226031 Lucknow India
| | - Akhilesh Kumar
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226 031 Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| | - Namrata Rastogi
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226 031 Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| |
Collapse
|
3
|
Kozlov M, Bolshakov KM, Kolotyrkina NG, Zavarzin IV. Synthesis of Benzothiazole‐ and Benzoxazole‐2‐carboxamides by 2‐Chloracetamides and 2‐Amino(thio)phenols Cyclocondensation with Elemental Sulfur in Water. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mikhail Kozlov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN 22 Leninsky Ave, 47 119991 Moscow RUSSIAN FEDERATION
| | - Konstantin M. Bolshakov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN 22 RUSSIAN FEDERATION
| | - Natalia G. Kolotyrkina
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN 30 RUSSIAN FEDERATION
| | - Igor V. Zavarzin
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN 22 RUSSIAN FEDERATION
| |
Collapse
|
4
|
Komkov AV, Baranin SV, Dmitrenok AS, Kolotyrkina NG, Zavarzin IV. A new route to the synthesis of 4-amino-substituted pyrido[2,3-d]pyrimidin-5-one derivatives. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3095-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Continuous-Flow Synthesis of Thioureas, Enabled by Aqueous Polysulfide Solution. Molecules 2021; 26:molecules26020303. [PMID: 33435580 PMCID: PMC7827778 DOI: 10.3390/molecules26020303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 01/31/2023] Open
Abstract
We have developed the continuous-flow synthesis of thioureas in a multicomponent reaction starting from isocyanides, amidines, or amines and sulfur. The aqueous polysulfide solution enabled the application of sulfur under homogeneous and mild conditions. The crystallized products were isolated by simple filtration after the removal of the co-solvent, and the sulfur retained in the mother liquid. Presenting a wide range of thioureas synthesized by this procedure confirms the utility of the convenient continuous-flow application of sulfur.
Collapse
|
6
|
Németh AG, Szabó R, Domján A, Keserű GM, Ábrányi‐Balogh P. Chromatography-Free Multicomponent Synthesis of Thioureas Enabled by Aqueous Solution of Elemental Sulfur. ChemistryOpen 2021; 10:16-27. [PMID: 33377316 PMCID: PMC7780808 DOI: 10.1002/open.202000250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
The development of a new three-component chromatography-free reaction of isocyanides, amines and elemental sulfur allowed us the straightforward synthesis of thioureas in water. Considering a large pool of organic and inorganic bases, we first optimized the preparation of aqueous polysulfide solution from elemental sulfur. Using polysulfide solution, we were able to omit the otherwise mandatory chromatography, and to isolate the crystalline products directly from the reaction mixture by a simple filtration, retaining the sulfur in the solution phase. A wide range of thioureas synthesized in this way confirmed the reasonable substrate and functional group tolerance of our protocol.
Collapse
Affiliation(s)
- András Gy. Németh
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| | - Renáta Szabó
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| | - Attila Domján
- NMR Research LaboratoryResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| | - György M. Keserű
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| | - Péter Ábrányi‐Balogh
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| |
Collapse
|
7
|
Tian Y, Pang L, Zhang R, Xu T, Wang S, Yu B, Gao L, Cong H, Shen Y. Poly-tetrahydropyrimidine Antibacterial Hydrogel with Injectability and Self-Healing Ability for Curing the Purulent Subcutaneous Infection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50236-50247. [PMID: 33124426 DOI: 10.1021/acsami.0c13822] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Infections caused by pathogenic microorganisms have always been the Achilles heel in the clinic. In this work, to overcome this conundrum, we proposed an injectable multifunctional hydrogel material with outstanding antibacterial properties and self-healing properties and no adverse effects on health. The cross-linked hydrogel with three-dimensional (3D) networks was quickly formed via the dynamic Schiff base between amino-modified poly-tetrahydropyrimidine (PTHP-NH2) and multiple vanillin polymer P(DMA-VA) in 30 s. This hydrogel composite presents effective defense against both Gram-positive and Gram-negative bacteria, especially for the pyogenic Staphylococcus aureus. Moreover, the hydrogel showed almost no hemolysis and cytotoxicity. In vivo investigations indicated that hydrogels effectively killed S. aureus and protected against deterioration of inflammation. Besides, bioimaging of mice demonstrated that the hydrogel could be completely metabolized within 16 h. In a nutshell, given its outstanding antibacterial property and biocompatibility, the novel hydrogel could be an ideal candidate for the subcutaneous infection application.
Collapse
Affiliation(s)
- Yongchang Tian
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Long Pang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Rong Zhang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Taimin Xu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Song Wang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Lilong Gao
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
8
|
Affiliation(s)
| | - Jetze J. Tepe
- Department of Chemistry Michigan State University East Lansing Michigan 48823
| |
Collapse
|
9
|
Tikhonova TA, Ilment NV, Lyssenko KA, Zavarzin IV, Volkova YA. Sulfur-mediated synthesis of unsymmetrically substituted N-aryl oxalamides by the cascade thioamidation/cyclocondensation and hydrolysis reaction. Org Biomol Chem 2020; 18:5050-5060. [PMID: 32578650 DOI: 10.1039/d0ob00811g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and straightforward synthesis of unsymmetrically substituted N-aryl oxalamides from 2,2'-biphenyldiamines, 2-chloroacetic acid derivatives, elemental sulfur, and water has been developed. This protocol is distinguished by efficiency in water under metal-free conditions for N-aryl oxalamides bearing a side-chain NH2-group; it can be adapted for scale-up synthesis. The scope and limitations of this transformation have been investigated.
Collapse
Affiliation(s)
- Tatyana A Tikhonova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation.
| | - Nikita V Ilment
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation.
| | - Konstantin A Lyssenko
- G.V. Plekhanov Russian University of Economics, 36 Stremyanny Per., Moscow 117997, Russian Federation and Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Igor V Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation.
| | - Yulia A Volkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation.
| |
Collapse
|
10
|
Chen L, Liu X, Zou Y. Recent Advances in the Construction of Phosphorus‐Substituted Heterocycles, 2009–2019. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901540] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Long Chen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 Peoples's Republic of China
| | - Xiao‐Yan Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 Peoples's Republic of China
| | - Yun‐Xiang Zou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 Peoples's Republic of China
| |
Collapse
|
11
|
Komendantova AS, Lyssenko KA, Zavarzin IV, Volkova YA. Iodine-promoted synthesis of pyrazoles from 1,3-dicarbonyl compounds and oxamic acid thiohydrazides. Org Chem Front 2020. [DOI: 10.1039/d0qo00476f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel approach to 3,4-dicarbonyl-substituted pyrazoles from 1,3-dicarbonyl compounds and oxamic acid thiohydrazides was developed via iodine-promoted cascade imination/halogenation/cyclization/ring contraction reaction.
Collapse
Affiliation(s)
- Anna S. Komendantova
- N.D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Konstantin A. Lyssenko
- G.V. Plekhanov Russian University of Economics
- Moscow 117997
- Russian Federation
- Department of Chemistry
- M.V. Lomonosov Moscow State University
| | - Igor V. Zavarzin
- N.D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Yulia A. Volkova
- N.D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
| |
Collapse
|