1
|
Yuan L, Wang J, Tang Q, Wang Y, Ma B, Shang Y, He X. DBU-catalyzed annulation strategy for modular assembly of 2,3-difunctionalized dihydrobenzofurans. Org Biomol Chem 2025; 23:1832-1836. [PMID: 39815825 DOI: 10.1039/d4ob01406e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
An organocatalytic approach for the construction of 2,3-dihydrobenzofuran scaffold through a formal [4 + 1] annulation of 2-(2-nitrovinyl)phenols and α-bromoacetophenones in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) has been developed. This protocol could be easily performed in one mmol scale, giving a broad range of 2,3-dihydrobenzofuran derivatives in moderate to excellent yields and remarkable diastereoselectivity (>20 : 1 dr in general) with good functional group tolerance.
Collapse
Affiliation(s)
- Lili Yuan
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, Hefei, 230601, P. R. China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China.
| | - Jie Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China.
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China.
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, P.R. China
| | - Yiping Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China.
| | - Beibei Ma
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China.
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China.
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China.
| |
Collapse
|
2
|
Ma P, Wang Y, Wang J. Copper-Catalyzed Three-Component Tandem Cyclization for One-Pot Synthesis of Indole-Benzofuran Bis-Heterocycles. J Org Chem 2024; 89:17168-17175. [PMID: 39576131 DOI: 10.1021/acs.joc.4c01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
A one-pot, three-component synthesis of indole-benzofuran bis-heterocycles from terminal alkynes, salicylaldehydes, and indoles has been developed via copper-catalyzed tandem annulation. This catalytic system utilizes readily available starting materials, enabling predictable synthesis of indole-benzofuran bis-heterocycles with broad substrate versatility, excellent regiocontrol, and gram-scale amenability. The reaction proceeds via a sequential pathway involving A3 coupling, 1,4-conjugate addition, and 5-exo-dig cyclization.
Collapse
Affiliation(s)
- Peng Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yuhang Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jianhui Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Wang YQ, Chen LJ, Yang RL, Lang M, Peng JB. Oxidative [4+2] Annulation of Pyrrole-2-carbaldehyde Derivatives with o-Hydroxyphenyl Propargylamines: Syntheses of 5,6,7-Trisubstituted Indolizines. Chemistry 2024; 30:e202402487. [PMID: 39177474 DOI: 10.1002/chem.202402487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
A base promoted oxidative [4+2] annulation of pyrrole-2-carbaldehyde derivatives with o-hydroxyphenyl propargylamines for the synthesis of highly substituted indolizines has been developed. Using DBN as base, a broad range of 5,6,7-trisubstituted indolizines have been prepared in good to excellent yields under mild conditions, and many useful functional groups can be tolerated.
Collapse
Affiliation(s)
- Yu-Qing Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| | - Li-Jia Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| | - Rui-Lin Yang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| | - Ming Lang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| | - Jin-Bao Peng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| |
Collapse
|
4
|
He X, Wang D, Liu Y, Wu M, Kong Y, Tang Q, Wang Y, Fan C, Shang Y. Synthesis of arene-functionalized fused heterocyclic scaffolds via a regioselective cascade 1,4-conjugate addition/5- exo-dig annulation strategy. Org Biomol Chem 2023; 21:9159-9172. [PMID: 37962430 DOI: 10.1039/d3ob01572f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Facile access to furan fused heterocyclic scaffolds through a regioselective cascade reaction of propargylamines with 4-hydroxy-2H-pyran-2-ones and 4-hydroxy-6-methylpyridin-2(1H)-one has been achieved. This cascade reaction presumably involves the formation of ortho-alkynyl quinone methide (o-AQM), 1,4-conjugate addition, followed by regioselective 5-exo-dig annulation, and a 1,3-H shift process. Moreover, the reaction provides a new and efficient method for the synthesis of highly sterically congested 3-phenolic furo[3,2-c]pyran-4-ones and furo[3,2-c]pyridin-4(5H)-ones by the formation of a furan ring from readily available starting materials in good to high yields (50-82%) with broad functional group compatibility in a single step. Significantly, the strategy described here is easily scalable and several useful synthetic transformations of the prepared arene-functionalized 4H-furo[3,2-c]pyran-4-ones were also performed.
Collapse
Affiliation(s)
- Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Demao Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Yanan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Mengdi Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Yangzilin Kong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Yiping Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Chenli Fan
- School of Material Engineering, Wuhu Institute of Technology, Wuhu, 241002, People's Republic of China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| |
Collapse
|
5
|
Kumari A, Jain A, Shukla K, Patra R, Rana NK. A reusable polymer anchored pyridine mediated formal [4 + 1] annulation reaction for the diastereoselective synthesis of 2,3-dihydrobenzofurans. Org Biomol Chem 2023. [PMID: 37376919 DOI: 10.1039/d3ob00804e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
We have developed a highly stereoselective formal [4 + 1] annulation reaction to construct trans-2,3-dihydrobenzofurans utilising in situ generated supported pyridinium ylide. This approach has excellent substrate versatility and gram-scale synthesis capability. Moreover, the polymer-anchored pyridine has been recovered and reused multiple times. The product has been transformed into valuable molecules.
Collapse
Affiliation(s)
- Akanksha Kumari
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342030, India.
| | - Anshul Jain
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342030, India.
| | - Khyati Shukla
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Ranjan Patra
- Amity Institute of Click Chemistry Research & Studies, Amity University, Uttar Pradesh 201303, India
| | - Nirmal K Rana
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342030, India.
| |
Collapse
|
6
|
Sorabad GS, Yang DY. Lewis Acid-Catalyzed 1,4-Addition and Annulation of 4-Hydroxy-coumarins with o-Hydroxyphenyl Propargyl Amines: Entry to Regio-Selective Synthesis of Furano[3,2- c]coumarins and Pyrano[3,2- c]coumarins. J Org Chem 2023; 88:4730-4742. [PMID: 36935550 DOI: 10.1021/acs.joc.3c00213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
A facile and regioselective Lewis acid-catalyzed cascade annulation of o-hydroxyphenyl propargyl amines with 4-hydroxycoumarin to afford furano[3,2-c]coumarin and pyrano[3,2-c]coumarin derivatives is reported. The reaction presumably proceeds by the conjugate addition of 4-hydroxycoumarin to the in situ-generated alkynyl o-quinone methide and is followed by intramolecular 5-exo-dig and 6-endo-dig annulation to form furano[3,2-c]coumarins and pyrano[3,2-c]coumarins, respectively. The prepared o-hydroxyl substituted pyrano[3,2-c]coumarins could be readily transformed into the corresponding coumarin-derived dioxabicycles by acid-mediated cyclization.
Collapse
Affiliation(s)
- Ganesh Shivayogappa Sorabad
- Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 407224, Taiwan
| | - Ding-Yah Yang
- Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 407224, Taiwan.,Graduate Program for Biomedical and Materials Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 407224, Taiwan
| |
Collapse
|
7
|
Li Z, Zhang PX, Li ZZ, Zhang XL, Cao HY, Gao YN, Bian M, Chen HY, Liu ZJ. Diastereoselective Synthesis of Chromeno[3,2- d]isoxazoles via Brønsted Acid Catalyzed Tandem 1,6-Addition/Double Annulations of o-Hydroxyl Propargylic Alcohols. Org Lett 2022; 24:6863-6868. [PMID: 36102802 DOI: 10.1021/acs.orglett.2c02830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Brønsted acid catalyzed tandem process to access densely functionalized chromeno[3,2-d]isoxazoles with good to excellent yields and diastereoselectivities was disclosed. The procedure is proposed to involve a 1,6-conjugate addition/electrophilic addition/double annulations process of alkynyl o-quinone methides (o-AQMs) in situ generated from o-hydroxyl propargylic alcohols with nitrones. Mild conditions, good functional group compatibility, easy scale-up of the reaction, and further product transformation demonstrated its potential application.
Collapse
Affiliation(s)
- Zhu Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Pei-Xu Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Zhao-Zhao Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Xing-Lu Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Hong-Yuan Cao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Yu-Ning Gao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Ming Bian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Hui-Yu Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Zhen-Jiang Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
8
|
Fan C, Li R, Duan J, Xu K, Liu Y, Wang D, He X. Meldrum's acid-induced and FeCl 3-catalyzed one-pot domino reactions for construction of bis(indolyl)methanes. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2076245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chenli Fan
- School of Material Engineering, Wuhu Institute of Technology, Wuhu, People’s Republic of China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Ministry of Education, Anhui Normal University, Wuhu, People’s Republic of China
| | - Jiahui Duan
- Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Ministry of Education, Anhui Normal University, Wuhu, People’s Republic of China
| | - Keke Xu
- Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Ministry of Education, Anhui Normal University, Wuhu, People’s Republic of China
| | - Yanan Liu
- Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Ministry of Education, Anhui Normal University, Wuhu, People’s Republic of China
| | - Demao Wang
- Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Ministry of Education, Anhui Normal University, Wuhu, People’s Republic of China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Ministry of Education, Anhui Normal University, Wuhu, People’s Republic of China
| |
Collapse
|
9
|
Yi MH, Jin HS, Wang RB, Zhao LM. Copper-Catalyzed Cascade Annulation of o-Hydroxyphenyl Propargylamines with Pyrazolin-5-ones to Access Pyrano[2,3- c]pyrazoles. J Org Chem 2022; 87:5795-5803. [PMID: 35442039 DOI: 10.1021/acs.joc.2c00122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient copper-catalyzed cascade annulation of o-hydroxyphenyl propargylamines and pyrazolin-5-ones is described. This methodology leads to the rapid assembly of a series of valuable pyrano[2,3-c]pyrazoles with good yields across a wide range of substrates in a simple fashion. This novel reaction involves the formation of alkynyl ortho-quinone methides, a 1,4-conjugate addition, and a subsequent 6-endo cyclization process. The mechanistic elucidation is well supported by control experiment and literature precedents.
Collapse
Affiliation(s)
- Meng-Hao Yi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Hai-Shan Jin
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Ru-Bing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li-Ming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
10
|
Hua TB, Ma YH, He XY, Wang L, Yan JY, Yang QQ. A formal [4 + 1] cycloaddition reaction of Baylis–Hillman bromides with sulfur ylides: facile access to α-alkenyl lactones. Org Chem Front 2022. [DOI: 10.1039/d2qo00451h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A formal [4 + 1] cycloaddition reaction of Baylis–Hillman adducts with sulfur ylides has been developed for the first time.
Collapse
Affiliation(s)
- Ting-Bi Hua
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, China
| | - Yu-Hong Ma
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, China
| | - Xiao-Yu He
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, China
| | - Long Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Jia-Ying Yan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Qing-Qing Yang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| |
Collapse
|
11
|
Ushakov P, Ioffe S, Sukhorukov AY. Recent advances in the application of ylide-like species in [4+1]-annulation reactions: an update review. Org Chem Front 2022. [DOI: 10.1039/d2qo00698g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review, advances in [4+1]‐annulation reactions involving sulfonium, sulfoxonium and ammonium ylides, as well as diazo compounds and carbenes are summarized over the last 6 years. Newly emerged methods...
Collapse
|
12
|
Yan LQ, Yin Z, He X, Li Q, Li R, Duan J, Xu K, Tang Q, Shang Y. Copper-Catalyzed Cascade 1,4-Addition/Annulation/Hydrolysis of Propargylamines with 2-Hydroxynaphthalene-1,4-diones: Direct Formation of 12-Phenacyl-11 H-benzo[ b]xanthenes. J Org Chem 2021; 86:4182-4192. [PMID: 33625853 DOI: 10.1021/acs.joc.0c03029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel and versatile approach to construct 12-phenacyl-11H-benzo[b]xanthene-6,11(12H)-dione derivatives through copper-catalyzed cascade reaction of propargylamines with 2-hydroxynaphthalene-1,4-diones has been developed. The procedure is proposed to go through a sequence of 1,4-conjugate addition, intramolecular nucleophilic addition/dehydration, and hydrolysis of alkyne followed by an enol-ketone tautomerization. The reaction provides a new and highly efficient method for the synthesis of 12-phenacyl-11H-benzo[b]xanthene-6,11(12H)-diones by formation of three new bonds and one heterocycle from readily available starting materials in good to high yields (70-88%) with broad functional group compatibility in a single step.
Collapse
Affiliation(s)
- Li-Qin Yan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Zhenzhen Yin
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Qianqian Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Jiahui Duan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Keke Xu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| |
Collapse
|
13
|
Mild synthesis of isoxazoline derivatives via an efficient [4 + 1] annulation reaction of transient nitrosoalkenes and sulfur ylides. Sci Rep 2021; 11:2078. [PMID: 33483530 PMCID: PMC7822858 DOI: 10.1038/s41598-021-81370-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
An efficient [4 + 1] annulation between α-bromooximes and sulfur ylides via in situ generation of nitrosoalkenes under mild basic reaction conditions has been developed, providing an expeditious and scalable approach to synthesize biologically interesting isoxazoline derivatives with good to excellent yields.
Collapse
|
14
|
Jha BK, Prudhviraj J, Mainkar PS, Punna N, Chandrasekhar S. Diastereoselective synthesis of CF 3-dihydrobenzofurans by [4+1] annulation of in situ-generated CF 3- o-quinone methides and sulfur ylides. RSC Adv 2020; 10:38588-38591. [PMID: 35517513 PMCID: PMC9057278 DOI: 10.1039/d0ra08289a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
An efficient and highly diastereoselective synthesis of CF3-dihydrobenzofurans by the reaction of in situ-generated CF3-oQMs in the presence of a base with sulphur ylides is put forward. The generality of the present developed method was well studied with diverse substrates to access the corresponding products in excellent yields. The highly reactive CF3-oQM has been utilized first time for the annulation reaction. The first [4 + 1] annulation reaction of in situ-generated highly electrophilic CF3-ortho-quinone methides with sulphur ylides has been put forth under mild reaction conditions to access CF3-dihydrobenzofurans.![]()
Collapse
Affiliation(s)
- Babli K Jha
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Jaggaraju Prudhviraj
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Nagender Punna
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
15
|
He X, Li R, Choy PY, Liu T, Yuen OY, Leung MP, Shang Y, Kwong FY. Rapid Access of Alkynyl and Alkenyl Coumarins via a Dipyridinium Methylide and Propargylamine Cascade Reaction. Org Lett 2020; 22:7348-7352. [DOI: 10.1021/acs.orglett.0c02674] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xinwei He
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Pui Ying Choy
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Tianyi Liu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - On Ying Yuen
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Man Pan Leung
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Fuk Yee Kwong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
16
|
Deng Q, Meng X. Recent Advances in the Cycloaddition Reactions of 2‐Benzylidene‐1‐benzofuran‐3‐ones, and Their Sulfur, Nitrogen and Methylene Analogues. Chem Asian J 2020; 15:2838-2853. [DOI: 10.1002/asia.202000550] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Qingsong Deng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion Tianjin Key Laboratory of Drug Targeting and Bioimaging School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 P.R. China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion Tianjin Key Laboratory of Drug Targeting and Bioimaging School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 P.R. China
| |
Collapse
|
17
|
Ding H, Lv G, Chen Y, Luo Y, Li J, Guo L, Wu Y. Synthesis of 2,3‐dihydrofurans
via
Lewis acid‐Catalyzed [4+1] Cycloaddition of Enynones with Sulfoxonium Ylides in Ionic Liquids: A Mild and Green Platform. ChemistrySelect 2020. [DOI: 10.1002/slct.202002188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Haosheng Ding
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Guanghui Lv
- Department of Pharmacy, Taihe HospitalHubei University of Medicine No. 32 South Renmin Road Huibei, Shiyan 442000 P. R. China
| | - Yuncan Chen
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Yi Luo
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Jianglian Li
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Li Guo
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Yong Wu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| |
Collapse
|
18
|
He X, Xie M, Li R, Choy PY, Tang Q, Shang Y, Kwong FY. Organocatalytic Approach for Assembling Flavanones via a Cascade 1,4-Conjugate Addition/oxa-Michael Addition between Propargylamines with Water. Org Lett 2020; 22:4306-4310. [DOI: 10.1021/acs.orglett.0c01357] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Pui Ying Choy
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Fuk Yee Kwong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China
| |
Collapse
|
19
|
Tang Q, He X, Zhang J, Zhou T, Xie M, Li R, Zuo Y, Shang Y. Selective synthesis of 2‐(5‐oxo‐1‐arylhex‐1‐yn‐3‐yl)phenyl benzoates via FeCl
3
‐mediated cascade reactions of propargylamines with
β
‐enamino ketones. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 People's Republic of China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 People's Republic of China
| | - Jinxue Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 People's Republic of China
| | - Tongtong Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 People's Republic of China
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 People's Republic of China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 People's Republic of China
| | - Youpeng Zuo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 People's Republic of China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 People's Republic of China
| |
Collapse
|
20
|
Yang C, Chen C, Li S, He X, Zuo Y, Hu W, Zhou T, Wang J, Shang Y. Rh(III)-Catalyzed Relay Double Carbenoid Insertion and Diannulation of Sulfoximine Benzamides with α-Diazo Carbonyl Compounds: Access to Furo[2,3-c]isochromenes. Org Lett 2020; 22:2506-2511. [DOI: 10.1021/acs.orglett.9b04659] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chen Yang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Chen Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Shunfan Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Youpeng Zuo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Wangcheng Hu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Tongtong Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|