1
|
Reddy DS, Novitskiy IM, Beloglazkina AA, Kutateladze AG. Oxidative Control of Photoinduced Cascade Electrocyclizations in Aromatic Azido Imines to Access Complex Fused Imidazoles or Pyrazoles. Org Lett 2024; 26:2558-2563. [PMID: 38530919 DOI: 10.1021/acs.orglett.4c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Photoinduced cascade of two 6π-electron six- and five-center electrocyclizations in aromatic azido imines is oxidatively controlled to yield complex fused benzimidazoles or indazoles. Formation of benzimidazoles occurs via an unprecedented carbon-to-nitrogen o-iminoaryl 1,2-shift.
Collapse
Affiliation(s)
- D Sai Reddy
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Ivan M Novitskiy
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Anastasia A Beloglazkina
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Andrei G Kutateladze
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| |
Collapse
|
2
|
Turelli M, Ciofini I, Wang Q, Ottochian A, Labat F, Adamo C. Organic compounds for solid state luminescence enhancement/aggregation induced emission: a theoretical perspective. Phys Chem Chem Phys 2023; 25:17769-17786. [PMID: 37377211 DOI: 10.1039/d3cp02364h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Organic luminophores displaying one or more forms of luminescence enhancement in solid state are extremely promising for the development and performance optimization of functional materials essential to many modern key technologies. Yet, the effort to harness their huge potential is riddled with hurdles that ultimately come down to a limited understanding of the interactions that result in the diverse molecular environments responsible for the macroscopic response. In this context, the benefits of a theoretical framework able to provide mechanistic explanations to observations, supported by quantitative predictions of the phenomenon, are rather apparent. In this perspective, we review some of the established facts and recent developments about the current theoretical understanding of solid-state luminescence enhancement (SLE) with an accent on aggregation-induced emission (AIE). A description of the macroscopic phenomenon and the questions it raises is accompanied by a discussion of the approaches and quantum chemistry methods that are more apt to model these molecular systems with the inclusion of an accurate yet efficient simulation of the local environment. A sketch of a general framework, building from the current available knowledge, is then attempted via the analysis of a few varied SLE/AIE molecular systems from literature. A number of fundamental elements are identified offering the basis for outlining design rules for molecular architectures exhibiting SLE that involve specific structural features with the double role of modulating the optical response of the luminophores and defining the environment they experience in solid state.
Collapse
Affiliation(s)
- Michele Turelli
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Ilaria Ciofini
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Qinfan Wang
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Alistar Ottochian
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Frédéric Labat
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Carlo Adamo
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
- Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris, France
| |
Collapse
|
3
|
Shukla P, Deswal D, Pandit M, Latha N, Mahajan D, Srivastava T, Narula AK. Exploration of novel TOSMIC tethered imidazo[1,2-a]pyridine compounds for the development of potential antifungal drug candidate. Drug Dev Res 2021; 83:525-543. [PMID: 34569640 DOI: 10.1002/ddr.21883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 11/10/2022]
Abstract
New candidates of imidazo[1,2-a]pyridine were designed by combining 2-amino pyridine, TOSMIC and various assorted aldehydes to explore their antioxidant and antifungal potential. The design of these derivatives was based on utilizing the antifungal potential of azoles and TOSMIC moiety. These derivatives were synthesized by adopting multi-component reaction methodology, as it serves as a rapid and efficient tool to target structurally diverse heterocyclic compounds in quantitative yield. The resulting imidazo[1,2-a]pyridine derivatives were structurally verified by 1 HNMR, 13 CNMR, HRMS, and HPLC. The compounds were analyzed for their antioxidant and fluorescent properties and it was observed that compound 15 depicted highest potential. The compounds were evaluated for their antifungal potential to highlight their medical application in the area of Invasive Fungal Infections (IFI). Compound 12 gave the highest antifungal inhibition against Aspergillus fumigatus 3007 and Candida albicans 3018. To elucidate the antifungal mechanism, confocal images of treated fungi were analyzed, which depicted porous nature of fungal membrane. Estimation of fungal membrane sterols by UPLC indicated decrease in ergosterol component of fungal membrane. In silico studies further corroborated with the in vitro results as docking studies depicted interaction of synthesized heterocyclic compounds with amino acids present in the active site of target enzyme (lanosterol 14 alpha demethylase). Absorption, distribution, metabolism, and excretion (ADME) analysis was indicative of drug-likeliness of the synthesized compounds.
Collapse
Affiliation(s)
- Pratibha Shukla
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India.,Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University, Delhi, India
| | - Deepa Deswal
- Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University, Delhi, India
| | - Mansi Pandit
- Bioinformatics Infrastructure Facility, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Narayanan Latha
- Bioinformatics Infrastructure Facility, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Divyank Mahajan
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Tapasya Srivastava
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Anudeep Kumar Narula
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India.,Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University, Delhi, India
| |
Collapse
|
4
|
Benson N, Davis A, Woydziak ZR. Synthesis of pH Dependent Pyrazole, Imidazole, and Isoindolone Dipyrrinone Fluorophores using a Claisen-Schmidt Condensation Approach. J Vis Exp 2021:10.3791/61944. [PMID: 34180889 PMCID: PMC8498924 DOI: 10.3791/61944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Methine-bridged conjugated bicyclic aromatic compounds are common constituents of a range of biologically relevant molecules such as porphyrins, dipyrrinones, and pharmaceuticals. Additionally, restricted rotation of these systems often results in highly to moderately fluorescent systems as observed in 3H,5H-dipyrrolo[1,2-c:2',1'-f]pyrimidin-3-ones, xanthoglows, pyrroloindolizinedione analogs, BODIPY analogs, and the phenolic and imidazolinone ring systems of Green Fluorescent Protein (GFP). This manuscript describes an inexpensive and operationally simple method of performing a Claisen-Schmidt condensation to generate a series of fluorescent pH dependent pyrazole/imidazole/isoindolone dipyrrinone analogs. While the methodology illustrates the synthesis of dipyrrinone analogs, it can be translated to produce a wide range of conjugated bicyclic aromatic compounds. The Claisen-Schmidt condensation reaction utilized in this method is limited in scope to nucleophiles and electrophiles that are enolizable under basic conditions (nucleophile component) and non-enolizable aldehydes (electrophile component). Additionally, both the nucleophilic and electrophilic reactants must contain functional groups that will not inadvertently react with hydroxide. Despite these limitations, this methodology offers access to completely novel systems that can be employed as biological or molecular probes.
Collapse
Affiliation(s)
- Nicole Benson
- Department of Physical and Life Sciences, Nevada State College
| | - Adam Davis
- Department of Humanities, Nevada State College
| | | |
Collapse
|
5
|
Madea D, Mahvidi S, Chalupa D, Mujawar T, Dvořák A, Muchová L, Janoš J, Slavíček P, Švenda J, Vítek L, Klán P. Wavelength-Dependent Photochemistry and Biological Relevance of a Bilirubin Dipyrrinone Subunit. J Org Chem 2020; 85:13015-13028. [DOI: 10.1021/acs.joc.0c01673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dominik Madea
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Sadegh Mahvidi
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Chalupa
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Taufiqueahmed Mujawar
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Aleš Dvořák
- Institute of Medical Biochemistry and Laboratory Diagnostics, 4th Department of Internal Medicine, Faculty General Hospital and 1st Faculty of Medicine, Charles University, Na Bojišti 3, 121 08 Prague 2, Czech Republic
| | - Lucie Muchová
- Institute of Medical Biochemistry and Laboratory Diagnostics, 4th Department of Internal Medicine, Faculty General Hospital and 1st Faculty of Medicine, Charles University, Na Bojišti 3, 121 08 Prague 2, Czech Republic
| | - Jiří Janoš
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Jakub Švenda
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, 4th Department of Internal Medicine, Faculty General Hospital and 1st Faculty of Medicine, Charles University, Na Bojišti 3, 121 08 Prague 2, Czech Republic
| | - Petr Klán
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
6
|
The crystal structure of 2-[(S)-1-(naphthalen-1-yl)ethyl]-2,3,7,7 a- tetrahydro-3 a,6-epoxyisoindol-1(6 H)-one, C 19H 20NO 2. Z KRIST-NEW CRYST ST 2020. [DOI: 10.1515/ncrs-2020-0439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C19H20NO2, monoclinic, P21 (no. 4), a = 6.685(5) Å, b = 8.878(7) Å, c = 13.239(9) Å, β = 97.720(2)°, V = 778.75(10) Å3, Z = 2, R
gt
(F) = 0.0423, wR
ref
(F
2) = 0.0970, T = 296(2) K.
Collapse
|