1
|
Liu ZR, Herbert S, Schirok H, Ma C, Mei TS. Synthesis of 1,2-Benzothiazine via Nickel-Catalyzed Electrochemical Intramolecular Amination. Org Lett 2024; 26:9034-9039. [PMID: 39373662 DOI: 10.1021/acs.orglett.4c03222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Constructing a C-N bond by merging electrochemistry and nickel catalysis is considered a powerful strategy. Herein, we investigate highly efficient intramolecular amination at room temperature with excellent functional group tolerance. Mechanistic studies suggest that the rapid ligand exchange may lead to the NiI/NiIII catalytic cycle. This method not only provides a new perspective for intramolecular amination but also offers a novel approach for constructing the benzothiazine scaffold.
Collapse
Affiliation(s)
- Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Simon Herbert
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | - Hartmut Schirok
- Pharmaceuticals, Research and Development, Bayer AG, 42113 Wuppertal, Germany
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
2
|
Wu Y, Shi G, Liu Y, Kong Y, Wu M, Wang D, Wu X, Shang Y, He X. A rhodium-catalyzed cascade C-H activation/annulation strategy for the expeditious assembly of pyrrolidinedione-fused 1,2-benzothiazines. Org Biomol Chem 2024; 22:3523-3532. [PMID: 38606489 DOI: 10.1039/d4ob00193a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
A cascade annulation strategy triggered by rhodium(III)-catalyzed C-H activation has been reported for the expeditious assembly of pyrrolidinedione-fused 1,2-benzothiazines from free NH-sulfoximines with maleimides under mild conditions. Without the need for inert atmosphere protection, a broad range of sulfoximines with maleimides were well tolerated, producing diverse fused-thiazine derivatives in moderate to good yields. Additionally, the late-stage transformation of the target product demonstrated the potential synthetic value of this protocol.
Collapse
Affiliation(s)
- Yinsong Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Guanghao Shi
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
- Jiangsu Xidi Pharmaceuticals Co., Ltd, Nantong, 226000, P. R. China
| | - Yanan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Yangzilin Kong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Mengdi Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Demao Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Xiaobing Wu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, P.R. China.
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| |
Collapse
|
3
|
Wang B, Liang X, Zeng Q. Recent Advances in the Synthesis of Cyclic Sulfoximines via C-H Bond Activation. Molecules 2023; 28:molecules28031367. [PMID: 36771034 PMCID: PMC9921269 DOI: 10.3390/molecules28031367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Sulfoximines, a ubiquitous class of structural motifs, are widely present in bioactive molecules and functional materials that have received considerable attention from modern organic chemistry, pharmaceutical industries, and materials science. Sulfoximines have proved to be an effective directing group for C-H functionalization which was widely investigated for the synthesis of cyclic sulfoximines. Within the last decade, great progress has been achieved in the synthesis of cyclic sulfoximines. Thus, this review highlights the recent advances in the synthesis of cyclic sulfoximines via the C-H activation strategy and is classified based on the substrate types.
Collapse
|
4
|
Xu J. Synthesis of 1,2‐Azaphosphinane 2‐Oxides and 1,2‐Azaphosphinine 2‐Oxides: δ‐Phosphonolactams and δ‐Phosphinolactams. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiaxi Xu
- Beijing University of Chemical Technology College of Chemistry 15 Northern 3rd Ring Road East 100029 Beijing CHINA
| |
Collapse
|
5
|
Laha JK, Gupta P. Sulfoxylate Anion Radical-Induced Aryl Radical Generation and Intramolecular Arylation for the Synthesis of Biarylsultams. J Org Chem 2022; 87:4204-4214. [PMID: 35245054 DOI: 10.1021/acs.joc.1c03031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aryl radical generation from the corresponding aryl halides using an electron donor and subsequent intramolecular cyclization with arenes could be an important advancement in contemporary biaryl synthesis. A green and practically useful synthetic protocol to access diverse six- and seven-membered biarylsultams especially with a free NH group including demonstration of a gram-scale synthesis is reported herein. The sulfoxylate anion radical (SO2-•), generated in situ from the reagents rongalite or sodium dithionite (Na2S2O4), was found to be the key single electron transfer agent forming aryl radicals from aryl halides, which upon intramolecular arylation gives biarylsultams with good to excellent yields. The approach features generation of aryl radicals that remained underexplored, use of a cheap and readily available industrial reagents, and transition metal-free, mild, and green reaction conditions.
Collapse
Affiliation(s)
- Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| | - Pankaj Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| |
Collapse
|
6
|
Wang L, Zhai L, Chen J, Gong Y, Wang P, Li H, She X. Catalyst-Free 1,2-Dibromination of Alkenes Using 1,3-Dibromo-5,5-dimethylhydantoin (DBDMH) as a Bromine Source. J Org Chem 2022; 87:3177-3183. [PMID: 35133816 DOI: 10.1021/acs.joc.1c02906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A direct 1,2-dibromination method of alkenes is realized using 1,3-dibromo-5,5-dimethylhydantoin (DBDMH) as a bromine source. This reaction proceeds under mild reaction conditions without the use of a catalyst and an external oxidant. Various sorts of alkene substrates are transformed into the corresponding 1,2-dibrominated products in good to excellent yields with broad substrate scope and exclusive diastereoselectivity. This method offers a green and practical approach to synthesize vicinal dibromide compounds.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| | - Lele Zhai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| | - Jinyan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| | - Yulin Gong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| | - Peng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| | - Huilin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| |
Collapse
|
7
|
Liljenberg S, Nain-Perez A, Nilsson O, Matic J, Grøtli M. Environmentally friendly catechol-based synthesis of dibenzosultams. NEW J CHEM 2022. [DOI: 10.1039/d2nj00088a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A scalable reaction for the synthesis of dibenzosultams in water with the aid of K2CO3 and air.
Collapse
Affiliation(s)
- Sara Liljenberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Amalyn Nain-Perez
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Oscar Nilsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Josipa Matic
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41296 Gothenburg, Sweden
| |
Collapse
|
8
|
Gao W, Zong L, Wu W, Zhu M, Liu W, Zhao Y, Li T, Zhang S. Electrochemical Synthesis of Cyclic Diaryl Phosphinamides via Intramolecular sp 2 C-H Phosphinamidation. J Org Chem 2021; 87:547-555. [PMID: 34958216 DOI: 10.1021/acs.joc.1c02559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed an oxidant- and transition-metal-free approach to construct six-membered cyclic phosphinamides via an intramolecular electrochemical C-H phosphinamidation process. With nBu4NBr as the catalyst and electrolyte, cyclic phosphinamides bearing a variety of functional groups (22 examples) were readily accessed under mild conditions. Meanwhile, this protocol provided an alternative route to organic electroluminescent materials and P-N ligands.
Collapse
Affiliation(s)
- Wenchao Gao
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Luyi Zong
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Weilong Wu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Ming Zhu
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Wenmin Liu
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yiyang Zhao
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Ting Li
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Sheng Zhang
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
9
|
Mal S, Jana M, Sarkar S. Recent Update on Transition Metal‐Free C(sp
2
)−H Bond Halogenation in (Hetero) Arenes. ChemistrySelect 2021. [DOI: 10.1002/slct.202102956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sourav Mal
- Department of Chemistry University of Kalyani Kalyani 741235 West Bengal India
| | - Manoranjan Jana
- Department of Chemistry University of Kalyani Kalyani 741235 West Bengal India
| | - Satinath Sarkar
- Department of Chemistry University of Kalyani Kalyani 741235 West Bengal India
| |
Collapse
|
10
|
Gao Y, Zhao Q, Li L, Ma YN. Synthesis of Six-Membered N-Heterocycle Frameworks Based on Intramolecular Metal-Free N-Centered Radical Chemistry. CHEM REC 2021; 22:e202100218. [PMID: 34618405 DOI: 10.1002/tcr.202100218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/29/2022]
Abstract
The formation of intramolecular C-N bond represents a powerful strategy in organic transformation as the great importance of N-heterocycles in the fields of natural products and bioactive molecules. This personal account describes the synthesis of cyclic phosphinamidation, benzosultam, benzosulfoximine, phenanthridine and their halogenated compounds through transition-metal-free intramolecular oxidative C-N bond formation. Mechanism study reveals that N-X bond is initially formed under the effect of hypervalent halogen, which is very unstable and easily undergoes thermal or light homolytic cleavage to generate nitrogen radical. Then the nitrogen radical is trapped by the arene to give aryl radical. Rearomatization of aryl radical under the oxidant to provide corresponding N-heterocycle. Under suitable conditions, the N-heterocycles can be further transformed to halogenated N-heterocycles.
Collapse
Affiliation(s)
- Yan Gao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Qianyi Zhao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Lixin Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
| | - Yan-Na Ma
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
11
|
Mainkar PS, Vankamamidi A, Chandrasekhar S. More Twins in the Scientific Literature of the 21st Century. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201915777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Prathama S. Mainkar
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad 500007 TS India
| | - Ambica Vankamamidi
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad 500007 TS India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad 500007 TS India
| |
Collapse
|
12
|
Mainkar PS, Vankamamidi A, Chandrasekhar S. More Twins in the Scientific Literature of the 21st Century. Angew Chem Int Ed Engl 2020; 60:544-548. [PMID: 32170891 DOI: 10.1002/anie.201915777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 12/23/2022]
Abstract
This Essay highlights the complex issue of twinning in science publications. Historical accounts present cases where two scientists focused on the same problem and came up with the same solution following different paths. This has changed in the present day. The concurrent publication of rather similar research papers from different groups has increased in frequency since 2010. In the past, twinning in research publications was serendipitous, and there was a healthy competition among teams working on similar projects. Today, twinning has become more frequent. This can be attributed to the urge of researchers to have publications on popular topics, the tendency to base research programs on popular keywords, and funding agencies preferentially supporting certain areas of research. With vast amounts of literature being generated, editorial offices and referees may not be able to find these twins very easily. As we inch away from human ingenuity towards artificial intelligence, twinning may become even more frequent.
Collapse
Affiliation(s)
- Prathama S Mainkar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, TS, India
| | - Ambica Vankamamidi
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, TS, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, TS, India
| |
Collapse
|
13
|
Nguyen TM, Cao HA, Thuong Cao TT, Koyama S, Mac DH, Nguyen TB. Access to [2,1]Benzothiazine S, S-Dioxides from β-Substituted o-Nitrostyrenes and Sulfur. J Org Chem 2020; 85:12058-12066. [DOI: 10.1021/acs.joc.0c00918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Thi Mo Nguyen
- Faculty of Chemistry, VNU University of Science, Vietnam National University in Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Hoang Anh Cao
- Faculty of Chemistry, VNU University of Science, Vietnam National University in Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Thi Thuong Thuong Cao
- Faculty of Chemistry, VNU University of Science, Vietnam National University in Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Satoki Koyama
- Faculty of Chemistry, VNU University of Science, Vietnam National University in Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Dinh Hung Mac
- Faculty of Chemistry, VNU University of Science, Vietnam National University in Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Thanh Binh Nguyen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
14
|
Li S, Liu L, Wang R, Yang Y, Li J, Wei J. Palladium-Catalyzed Oxidative Annulation of Sulfoximines and Arynes by C–H Functionalization as an Approach to Dibenzothiazines. Org Lett 2020; 22:7470-7474. [DOI: 10.1021/acs.orglett.0c02615] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shan Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Liansheng Liu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Rong Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Yihui Yang
- Department of Applied Chemistry, Xi’an University of Technology, Xi’an 710048, China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Junfa Wei
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
15
|
Gao Y, Jing Y, Li L, Zhang J, Chen X, Ma YN. Synthesis of Phenanthridines through Iodine-Supported Intramolecular C–H Amination and Oxidation under Visible Light. J Org Chem 2020; 85:12187-12198. [DOI: 10.1021/acs.joc.0c01390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yan Gao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yi Jing
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lixin Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuenian Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan-Na Ma
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
16
|
Motati DR, Uredi D, Burra AG, Bowen JP, Fronczek FR, Smith CR, Watkins EB. Differential formation of nitrogen-centered radicals leading to unprecedented, regioselective bromination of N,N′-(1,2-phenylene)bisamides and 2-amidophenols. Org Chem Front 2020. [DOI: 10.1039/c9qo01508f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A highly efficient, site-selective, visible light-accelerated, remote C–H halogenation of unsymmetrical aromatic bisamides/amidoesters has been developed.
Collapse
Affiliation(s)
- Damoder Reddy Motati
- Center for Pharmacometrics and Molecular Discovery
- Department of Pharmaceutical Sciences
- College of Pharmacy
- Union University
- Jackson
| | - Dilipkumar Uredi
- Center for Pharmacometrics and Molecular Discovery
- Department of Pharmaceutical Sciences
- College of Pharmacy
- Union University
- Jackson
| | - Amarender Goud Burra
- Center for Pharmacometrics and Molecular Discovery
- Department of Pharmaceutical Sciences
- College of Pharmacy
- Union University
- Jackson
| | - J. Phillip Bowen
- Department of Pharmaceutical Sciences
- College of Pharmacy
- Mercer University
- Atlanta
- USA
| | | | - Clint R. Smith
- Center for Pharmacometrics and Molecular Discovery
- Department of Pharmaceutical Sciences
- College of Pharmacy
- Union University
- Jackson
| | - E. Blake Watkins
- Center for Pharmacometrics and Molecular Discovery
- Department of Pharmaceutical Sciences
- College of Pharmacy
- Union University
- Jackson
| |
Collapse
|