1
|
Rao K, Sharma A, Rathod GK, Barahdia AS, Jain R. Aminocarbonylation using CO surrogates. Org Biomol Chem 2025; 23:980-991. [PMID: 39666374 DOI: 10.1039/d4ob01639d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Aminocarbonylation reactions play a critical role in the synthesis of amides. Traditional aminocarbonylation processes often rely on carbon monoxide (CO) gas, a highly toxic and challenging reagent to handle. Recent advancements in CO surrogates address these challenges. This review looks at the various CO substitutes used in aminocarbonylation reactions. These include metal carbonyls, acids, formates, chloroform, and others that release CO. Use of CO surrogates not only improves safety but also broadens the substrate scope and operational simplicity of the aminocarbonylation reactions. This review provides a summary of recent progress made in aminocarbonylation reactions using different CO surrogates. We discuss key methodologies, catalytic systems, and mechanistic insights, highlighting the efficiency and versatility of CO surrogates in amide bond formation.
Collapse
Affiliation(s)
- Kamya Rao
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India.
| | - Anku Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India.
| | - Gajanan K Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India.
| | - Aman S Barahdia
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India.
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India.
| |
Collapse
|
2
|
Hu H, Zhang C, Ma Z, Wang C, Zhao D, Bai Y, Ni X, Wang J. Palladium-catalyzed regioselective carbonylation of 2-amino-2,3-diphenylpropanoate to 5/6-membered benzolactams. Org Biomol Chem 2024; 22:8407-8412. [PMID: 39350651 DOI: 10.1039/d4ob01310g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Five/six-membered benzolactams are significant blocks in both organic and medicinal chemistry. Achieving 5/6-membered benzolactams from the same starting compound under varying reaction conditions presents a significant challenge. Herein, palladium-catalyzed free amine-oriented regioselective C-H activations/carbonylations mediated by hexacarbonylmolybdenum, leading to diverse sizes of benzolactams, respectively, have been developed. Six-membered dihydroisoquinolinones can be obtained selectively in acetic acid using benzoquinone as an oxidant. While unfavorable five-membered isoindolinones were formed in the presence of Cu(II) as an oxidant and dihydrooxazole ligands in 1,2-dichlorobenzene. The substituents on the phenyl ring also had a great influence on the regioselectivity of the reaction. In addition, an asymmetric version of the reaction has also been attempted preliminarily.
Collapse
Affiliation(s)
- Huaanzi Hu
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| | - Can Zhang
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| | - Zhehao Ma
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| | - Donghui Zhao
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| | - Xinye Ni
- Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou 213164, P. R. China.
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| |
Collapse
|
3
|
Suzuki H, Kiyobe S, Matsuda T. Rhodium-catalysed additive-free carbonylation of benzamides with diethyl dicarbonate as a carbonyl source. Org Biomol Chem 2024; 22:2744-2748. [PMID: 38470370 DOI: 10.1039/d4ob00059e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Phthalimides are prevalent in numerous pharmaceuticals, prompting various phthalimide syntheses through C-H activation. Nevertheless, the necessity for stoichiometric additives limits their practicality and versatility. Herein, we introduced diethyl dicarbonate as a carbonyl source for an additive-free carbonylation of benzamides. This transformation signifies an operationally simple and CO-free phthalimide synthesis.
Collapse
Affiliation(s)
- Hirotsugu Suzuki
- Tenure-Track Program for Innovative Research, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan.
| | - Seigo Kiyobe
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Takanori Matsuda
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| |
Collapse
|
4
|
P H, M V, Dey R. Multicomponent synthesis via acceptorless alcohol dehydrogenation: an easy access to tri-substituted pyridines. RSC Adv 2024; 14:10761-10767. [PMID: 38572342 PMCID: PMC10988360 DOI: 10.1039/d4ra00439f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024] Open
Abstract
Herein, we report palladium supported on a hydroxyapatite catalyst for synthesizing tri-substituted pyridines using ammonium acetate as the nitrogen source via acceptorless alcohol dehydrogenation strategy. The strategy offers a broad substrate scope using inexpensive and readily available alcohols as the starting material. The catalyst was prepared using a simple method and analyzed by several techniques, including FE-SEM, EDS, HR-TEM, BET, XRD, FT-IR, UV-visible spectroscopy, and XPS, demonstrating the anchoring of Pd nanoparticles on hydroxyapatite in the zero oxidation state. Moreover, several controlled experiments were carried out to understand the reaction pathway and a suitable mechanism has been proposed.
Collapse
Affiliation(s)
- Hima P
- Department of Chemistry, National Institute of Technology Calicut Kozhikode 673601 India
| | - Vageesh M
- Department of Chemistry, National Institute of Technology Calicut Kozhikode 673601 India
| | - Raju Dey
- Department of Chemistry, National Institute of Technology Calicut Kozhikode 673601 India
| |
Collapse
|
5
|
Li X, Cheng H, Shao J, Zhang G, Zhang S. Rh(III)-Catalyzed [4 + 1] Annulation of Benzamides with Vinyl Cyclic Carbonates for the Synthesis of Isoindolinones. Org Lett 2024; 26:1304-1309. [PMID: 38329782 DOI: 10.1021/acs.orglett.3c03899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
A Rh(III)-catalyzed C-H bond activation and subsequent [4+1] annulation of benzamides with vinyl cyclic carbonates have been developed for the synthesis of isoindolinones, in which the electron-rich alkenes could serve as one-carbon units. This reaction proceeds smoothly with high regioselectivity under oxidant- and silver-free conditions and exhibits broad substrate scope and functional group tolerance including some biological active materials. The scale-up reaction and derivatizations of the product further demonstrate the potential synthetic utility of this transformation.
Collapse
Affiliation(s)
- Xiang Li
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Hang Cheng
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Jianghao Shao
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guodong Zhang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu 225002, China
| | - Shuilong Zhang
- Shanghai Xchemtech Co., Ltd., 116 Cheyang Road, Songjiang district, Shanghai 201611, China
| |
Collapse
|
6
|
Wei P, Zhu Y, Zhang J, Ying J, Wu XF. Cobalt-catalyzed direct functionalization of indoles with isocyanides. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Ram S, Mehara P, Kumar A, Sharma AK, Chauhan AS, Kumar A, Das P. Supported-Pd catalyzed carbonylative synthesis of phthalimides and isoindolinones using Oxalic acid as in situ CO surrogate with 2-iodobenzamides and 2-iodobenzylanilines in ppm-level catalyst loading. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Mor S, Khatri M. Convenient synthesis of benzothiazinoisoindol-11-ones and benzoindenothiazin-11-ones, and antimicrobial testing thereof. Mol Divers 2022:10.1007/s11030-022-10483-9. [PMID: 35922654 DOI: 10.1007/s11030-022-10483-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
Benzo[5,6][1,4]thiazino[3,4-a]isoindol-11-ones 5a-t and benzo[b]indeno[1,2-e][1,4]thiazin-11(10aH)-ones 6a-e were synthesized conveniently via cyclocondensation of 2-bromo-2-(2/3-substitutedphenyl)-1H-indene-1,3(2H)-diones and 2-aminobenzenethiols in freshly dried ethanol with 70-85% yields. The synthesized derivatives were well characterized by employing different spectral techniques (FTIR, 1H & 13C NMR and HRMS) and X-ray crystallographic analysis. Further, all the reported compounds were tested for their antibacterial and antifungal activities using Ciprofloxacin and Fluconazole as standard drugs, respectively. The results of antimicrobial evaluation revealed that compounds 5o and 5t displayed remarkable inhibitory activity against B. subtilis, S. aureus, P. aeruginosa and A. niger with MIC values in the range of 0.0141-0.0283 µmol/mL, whereas 5j was found active against E. coli and C. albicans with MIC values of 0.0286 µmol/mL and 0.0143 µmol/mL, respectively. Additionally, among all the benzo[b]indeno[1,2-e][1,4]thiazin-11(10aH)-ones, 6c exhibited excellent inhibition against all the tested bacterial and fungal strains with MIC values ranging from 0.0143 to 0.1145 µmol/mL. Structure activity relationships were also established for all the tested benzo[5,6][1,4]thiazino[3,4-a]isoindol-11-ones 5a-t.
Collapse
Affiliation(s)
- Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| | - Mohini Khatri
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| |
Collapse
|
9
|
Yao Y, Su S, Wu N, Wu W, Jiang H. The cobalt( ii)-catalyzed acyloxylation of picolinamides with bifunctional silver carboxylate via C–H bond activation. Org Chem Front 2022. [DOI: 10.1039/d2qo01131j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cobalt(ii)-catalyzed C–H bond acyloxylation of picolinamides with bifunctional silver carboxylate has been developed. The mild and practical esterification provides an atom-economic route to access to polysubstituted naphthalene compounds.
Collapse
Affiliation(s)
- Yongqi Yao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| | - Shaoting Su
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| | - Nan Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| |
Collapse
|
10
|
Huang Z, Tang C, Chen Z, Pi S, Tan Z, Deng J, Li Y. Iron-catalyzed hydroaminocarbonylation of alkynes to produce succinimides with NH4HCO3. J Catal 2021. [DOI: 10.1016/j.jcat.2021.09.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Zheng Y, Dong M, Qu E, Bai J, Wu XF, Li W. Pd-Catalyzed Carbonylative Synthesis of 4H-Benzo[d][1,3]Oxazin-4-Ones Using Benzene-1,3,5-Triyl Triformate as the CO Source. Chemistry 2021; 27:16219-16224. [PMID: 34529291 DOI: 10.1002/chem.202103137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Indexed: 11/10/2022]
Abstract
A facile synthesis of 4H-benzo[d][1,3]oxazin-4-one derivatives by Pd-catalyzed carbonylative cross-coupling between N-(ortho-bromoaryl)amides and benzene-1,3,5-triyl triformate (TFBen) was developed. This procedure does not require the toxic and flammable gas CO as the carbonyl source and tolerates a wide scope of functional groups. Remarkably, 4H-benzo[d][1,3]oxazin-4-ones incorporated to natural products and drugs can be constructed by this method.
Collapse
Affiliation(s)
- Yan Zheng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Mengke Dong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Erdong Qu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Jin Bai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China.,Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straβe 29a, 18059, Rostock, Germany
| | - Wanfang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 200093, Shanghai, China
| |
Collapse
|
12
|
Yang H, Zhang J, Chen Z, Wu XF. TFBen (Benzene-1,3,5-triyl triformate): A Powerful and Versatile CO Surrogate. CHEM REC 2021; 22:e202100220. [PMID: 34591367 DOI: 10.1002/tcr.202100220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022]
Abstract
Carbonylative reactions by the using of CO surrogates constitute a facile avenue for the assembly of valuable carbonyl-containing compounds due to the colorless, toxic, flammable, and not easy-handing character of carbon monoxide gas. Recent advances in the carbonylative transformations with TFBen (benzene-1,3,5-triyl triformate) as a safe and convenient CO precursor are systematically summarized and discussed, which can be divided into three parts based on the patterns of the obtained products. This Review focuses on the discussion of the application of TFBen in carbonylative synthesis of various carbonyl-containing compounds.
Collapse
Affiliation(s)
- Hefei Yang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Jiajun Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Zhengkai Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, People's Republic of China
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| |
Collapse
|
13
|
Orduña JM, Domínguez G, Pérez-Castells J. Cobalt catalysed aminocarbonylation of thiols in batch and flow for the preparation of amides. RSC Adv 2021; 11:30398-30406. [PMID: 35480268 PMCID: PMC9041104 DOI: 10.1039/d1ra04736a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/04/2021] [Indexed: 11/21/2022] Open
Abstract
The synthesis of amides from thiols through a cobalt-catalyzed aminocarbonylation is shown. After optimizing all the reaction parameters, the methodology makes possible the obtention of amides with variable yields, while competing reactions such as the formation of disulfides and ureas can be limited. The process works well with aromatic thiols with electron donating groups (EDG) whereas other thiols give reaction with lower yields. The previous process has been transferred and optimized into flow equipment, thus allowing using less CO in a safer way, and permitting the scaling up of the synthesis. Two drugs, moclobemide and itopride were prepared with this methodology, albeit only in the second case with good results. A mechanistic pathway is proposed.
Collapse
Affiliation(s)
- Jose Maria Orduña
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe 28660 Boadilla del Monte Madrid Spain
| | - Gema Domínguez
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe 28660 Boadilla del Monte Madrid Spain
| | - Javier Pérez-Castells
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe 28660 Boadilla del Monte Madrid Spain
| |
Collapse
|
14
|
Tien CH, Trofimova A, Holownia A, Kwak BS, Larson RT, Yudin AK. Carboxyboronate as a Versatile In Situ CO Surrogate in Palladium-Catalyzed Carbonylative Transformations. Angew Chem Int Ed Engl 2021; 60:4342-4349. [PMID: 33085182 DOI: 10.1002/anie.202010211] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/08/2020] [Indexed: 12/22/2022]
Abstract
The application of carboxy-MIDA-boronate (MIDA=N-methyliminodiacetic acid) as an in situ CO surrogate for various palladium-catalyzed transformations is described. Carboxy-MIDA-boronate was previously shown to be a bench-stable boron-containing building block for the synthesis of borylated heterocycles. The present study demonstrates that, in addition to its utility as a precursor to heterocycle synthesis, carboxy-MIDA-boronate is an excellent in situ CO surrogate that is tolerant of reactive functionalities such as amines, alcohols, and carbon-based nucleophiles. Its wide functional-group compatibility is highlighted in the palladium-catalyzed aminocarbonylation, alkoxycarbonylation, carbonylative Sonogashira coupling, and carbonylative Suzuki-Miyaura coupling of aryl halides. A variety of amides, esters, (hetero)aromatic ynones, and bis(hetero)aryl ketones were synthesized in good-to-excellent yields in a one-pot fashion.
Collapse
Affiliation(s)
- Chieh-Hung Tien
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Alina Trofimova
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Aleksandra Holownia
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Branden S Kwak
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Reed T Larson
- Process Research & Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| |
Collapse
|
15
|
Le Z, Zhu Y, Bao Z, Ying J, Wu X. Palladium‐Catalyzed Carbonylative Synthesis of 1,5‐Dihydro‐2
H
‐pyrrol‐2‐ones from Propargyl Amines and Benzyl Chlorides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhengjie Le
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018
| | - Yiwen Zhu
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018
| | - Zhi‐Peng Bao
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018
| | - Jun Ying
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018
| | - Xiao‐Feng Wu
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian Liaoning People's Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock Albert-Einstein-Straβe 29a 18059 Rostock Germany
| |
Collapse
|
16
|
Karishma P, Gogia A, Mandal SK, Sakhuja R. Ruthenium Catalyzed C−H Amidation and Carbocyclization using Isocyanates: An Access to Amidated 2‐phenylphthalazine‐1,4‐diones and Indazolo[1,2‐
b
]phthalazine‐triones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pidiyara Karishma
- Department of Chemistry Birla Institute of Technology and Science Pilani Rajasthan 333031 India
| | - Alisha Gogia
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Sector 81 SAS Nagar, Manuali P.O. Mohali Punjab 140306 India
| | - Sanjay K. Mandal
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Sector 81 SAS Nagar, Manuali P.O. Mohali Punjab 140306 India
| | - Rajeev Sakhuja
- Department of Chemistry Birla Institute of Technology and Science Pilani Rajasthan 333031 India
| |
Collapse
|
17
|
Choi JH, Do Kim H, Kang JY, Jeong T, Ghosh P, Kim IS. Ruthenium(
II
)‐Catalyzed CH/NH Carbonylative Cyclization of
2‐Aryl
Quinazolinones with Isocyanates as
CO
Surrogates. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jin Ho Choi
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Hak Do Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Ju Young Kang
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Taejoo Jeong
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - In Su Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| |
Collapse
|
18
|
Zhu WQ, Fang YC, Han WY, Li F, Yang MG, Chen YZ. Palladium-catalyzed [2 + 2 + 1] annulation: access to chromone fused cyclopentanones with cyclopropenone as the CO source. Org Chem Front 2021. [DOI: 10.1039/d1qo00222h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A variety of chromone fused cyclopentanones are efficiently generated in good to high yields via palladium-catalyzed [2 + 2 + 1] annulation, in which cyclopropenone was utilized for the first time as the sole CO surrogate in the carbonylation process.
Collapse
Affiliation(s)
- Wen-Qing Zhu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Yu-Chen Fang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563006
| | - Fei Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563006
| | - Min-Ge Yang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563006
| |
Collapse
|
19
|
Tien C, Trofimova A, Holownia A, Kwak BS, Larson RT, Yudin AK. Carboxyboronate as a Versatile In Situ CO Surrogate in Palladium‐Catalyzed Carbonylative Transformations. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chieh‐Hung Tien
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Alina Trofimova
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Aleksandra Holownia
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Branden S. Kwak
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Reed T. Larson
- Process Research & Development Merck & Co., Inc. Rahway NJ 07065 USA
| | - Andrei K. Yudin
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| |
Collapse
|
20
|
Lukasevics L, Grigorjeva L. Cobalt-catalyzed carbonylation of the C-H bond. Org Biomol Chem 2020; 18:7460-7466. [PMID: 32935722 DOI: 10.1039/d0ob01633k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Direct carbonylation of the C-H bond is a great tool for installing a carbonyl group in a wide variety of substrates. This review summarizes the C-H bond carbonylation methodologies using the cobalt-catalyzed C-H bond functionalization approach. Despite the fact that cobalt-catalyzed carbonylation methodologies have been known since Murahashi's report in 1955, this area is still underdeveloped, particularly carbonylation of the C(sp3)-H bond.
Collapse
Affiliation(s)
- Lukass Lukasevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia.
| | | |
Collapse
|
21
|
Omer HM, Liu P, Brummond KM. Metal-Free C-C Coupling of an Allenyl Sulfone with Picolyl Amides to Access Vinyl Sulfones via Pyridine-Initiated In Situ Generation of Sulfinate Anion. J Org Chem 2020; 85:7959-7975. [PMID: 32423208 DOI: 10.1021/acs.joc.0c00788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Vinyl sulfones are privileged motifs known for their biological activity and synthetic utility. Synthetic transformations to efficiently access high-value compounds with these motifs are desired and sought after. Herein, a new procedure is described to form vinyl sulfone-containing compounds by selective functionalization of the C(sp3)-H bond adjacent to the pyridine ring of pharmacologically prevalent picolyl amides with an allenyl sulfone, 1-methyl-4-(propa-1,2-dien-1-ylsulfonyl)benzene. The reaction conditions are mild with no metal catalyst or additives required and display good functional group tolerance. Mechanistic studies for this unusual transformation suggest that the reaction operates via a rare pyridine-initiated and p-toluenesulfinate anion-mediated activation of the allenyl sulfone analogous to phosphine-triggered reactions.
Collapse
Affiliation(s)
- Humair M Omer
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kay M Brummond
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
22
|
Affiliation(s)
- Zhiping Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jian-Xing Xu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| |
Collapse
|
23
|
Morimoto T, Yamashita M, Tomiie A, Tanimoto H, Kakiuchi K. CO Gas‐free Intramolecular Cyclocarbonylation Reactions of Haloarenes Having a C‐Nucleophile through CO‐Relay between Rhodium and Palladium. Chem Asian J 2020; 15:473-477. [DOI: 10.1002/asia.201901595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/12/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Tsumoru Morimoto
- Division of Materials ScienceNara Institute of Science and Technology (NAIST) Ikoma Nara 630-0192 Japan
| | - Mana Yamashita
- Division of Materials ScienceNara Institute of Science and Technology (NAIST) Ikoma Nara 630-0192 Japan
| | - Ai Tomiie
- Division of Materials ScienceNara Institute of Science and Technology (NAIST) Ikoma Nara 630-0192 Japan
| | - Hiroki Tanimoto
- Division of Materials ScienceNara Institute of Science and Technology (NAIST) Ikoma Nara 630-0192 Japan
| | - Kiyomi Kakiuchi
- Division of Materials ScienceNara Institute of Science and Technology (NAIST) Ikoma Nara 630-0192 Japan
| |
Collapse
|
24
|
Ying J, Le Z, Bao ZP, Wu XF. Palladium-catalyzed double carbonylation of propargyl amines and aryl halides to access 1-aroyl-3-aryl-1,5-dihydro-2H-pyrrol-2-ones. Org Chem Front 2020. [DOI: 10.1039/d0qo00007h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A palladium-catalyzed carbonylative procedure for the synthesis of 1-aroyl-3-aryl-1,5-dihydro-2H-pyrrol-2-ones from propargyl amines and aryl halides with TFBen as the CO source has been developed.
Collapse
Affiliation(s)
- Jun Ying
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Zhengjie Le
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Zhi-Peng Bao
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
| |
Collapse
|
25
|
Chen Z, Wang LC, Wu XF. Carbonylative synthesis of heterocycles involving diverse CO surrogates. Chem Commun (Camb) 2020; 56:6016-6030. [DOI: 10.1039/d0cc01504k] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in the carbonylative synthesis of heterocycles by using diverse CO surrogates as sources of CO are summarized and discussed.
Collapse
Affiliation(s)
- Zhengkai Chen
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Le-Cheng Wang
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
| |
Collapse
|