1
|
Zhou Q, Sun P, Xiong HM, Xie J, Zhu GY, Tantillo DJ, Huang AC. Insight into neofunctionalization of 2,3-oxidosqualene cyclases in B,C-ring-opened triterpene biosynthesis in quinoa. THE NEW PHYTOLOGIST 2024; 241:764-778. [PMID: 37904576 DOI: 10.1111/nph.19345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/04/2023] [Indexed: 11/01/2023]
Abstract
Bioactive triterpenes feature complex fused-ring structures, primarily shaped by the first-committed enzyme, 2,3-oxidosqualene cyclases (OSCs) in plant triterpene biosynthesis. Triterpenes with B,C-ring-opened skeletons are extremely rare with unknown formation mechanisms, harbouring unchartered chemistry and biology. Here, through mining the genome of Chenopodium quinoa followed by functional characterization, we identified a stress-responsive and neofunctionalized OSC capable of generating B,C-ring-opened triterpenes, including camelliol A and B and the novel (-)-quinoxide A as wax components of the specialized epidermal bladder cells, namely the quinoxide synthase (CqQS). Protein structure analysis followed by site-directed mutagenesis identified key variable amino acid sites underlying functional interconversion between pentacyclic β-amyrin synthase (CqbAS1) and B,C-ring-opened triterpene synthase CqQS. Mutation of one key residue (N612K) in even evolutionarily distant Arabidopsis β-amyrin synthase could generate quinoxides, indicating a conserved mechanism for B,C-ring-opened triterpene formation in plants. Quantum computation combined with docking experiments further suggests that conformations of conserved W613 and F413 of CqQS might be key to selectively stabilizing intermediate carbocations towards B,C-ring-opened triterpene formation. Our findings shed light on quinoa triterpene skeletal diversity and mechanisms underlying B,C-ring-opened triterpene biosynthesis, opening avenues towards accessing their chemistry and biology and paving the way for quinoa trait engineering and quality improvement.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Peng Sun
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Hao-Ming Xiong
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, 999078, China
| | - Jiali Xie
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, 999078, China
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Ancheng C Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
2
|
Quílez del
Moral JF, Ruiz Martínez C, Pérez del Pulgar H, Martín González JE, Fernández I, López-Pérez JL, Fernández-Arteaga A, Barrero AF. Synthesis of Cannabinoids: "In Water" and "On Water" Approaches: Influence of SDS Micelles. J Org Chem 2021; 86:3344-3355. [PMID: 33533618 PMCID: PMC9087200 DOI: 10.1021/acs.joc.0c02698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 11/29/2022]
Abstract
We have proven that the biomimetic-like synthesis of cannabinoids from citral and the corresponding phenolic counterpart may well be carried out using water as a solvent. The influence of different additives such as surfactants was also analyzed. Rationalization of the reaction mode and regiochemistry of the processes were provided in terms of "on water" and "in water" reactions. The same reactions were conducted in organic media using Ga(III) salts as catalysts. Worthy of being underlined, an unprecedented formal [2+2+2] process was found to occur between two citral molecules and the corresponding phenolic species in both aqueous and organic environments. Computational studies were performed in order to gain a comprehensive mechanistic and energetic understanding of the different steps of this singular process. Finally, the influence of SDS micelles in the chemical behavior of olivetol and citral was also pursued using PGSE diffusion and NOESY NMR studies. These data permitted to tentatively propose the existence of a mixed micelle between olivetol and SDS assemblies.
Collapse
Affiliation(s)
- José F. Quílez del
Moral
- Department
of Organic Chemistry, Institute of Biotechnology, University of Granada, 18071 Granada, Spain
| | - Cristina Ruiz Martínez
- Department
of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Helena Pérez del Pulgar
- Department
of Organic Chemistry, Institute of Biotechnology, University of Granada, 18071 Granada, Spain
| | | | - Ignacio Fernández
- Department
of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - José Luis López-Pérez
- Department
of Pharmaceutical Sciences, IBSAL-CIETUS, University of Salamanca, 37007 Salamanca, Spain
| | | | - Alejandro F. Barrero
- Department
of Organic Chemistry, Institute of Biotechnology, University of Granada, 18071 Granada, Spain
| |
Collapse
|
3
|
Antibacterial Natural Halimanes: Potential Source of Novel Antibiofilm Agents. Molecules 2020; 25:molecules25071707. [PMID: 32276434 PMCID: PMC7180734 DOI: 10.3390/molecules25071707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022] Open
Abstract
The development of new agents against bacteria is an urgent necessity for human beings. The structured colony of bacterial cells, called the biofilm, is used to defend themselves from biocide attacks. For this reason, it is necessary to know their structures, develop new agents to eliminate them and to develop new procedures that allow an early diagnosis, by using biomarkers. Among natural products, some derivatives of diterpenes with halimane skeleton show antibacterial activity. Some halimanes have been isolated from marine organisms, structurally related with halimanes isolated from Mycobacterium tuberculosis. These halimanes are being evaluated as virulence factors and as tuberculosis biomarkers, this disease being one of the major causes of mortality and morbidity. In this work, the antibacterial halimanes will be reviewed, with their structural characteristics, activities, sources and the synthesis known until now.
Collapse
|