1
|
Sihag P, Chakraborty T, Jeganmohan M. Rhodium-Catalyzed Allylic C-H Functionalization of Unactivated Alkenes with α-Diazocarbonyl Compounds. Org Lett 2023. [PMID: 36795960 DOI: 10.1021/acs.orglett.2c04356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A redox-neutral mild methodology for the allylic C-H alkylation of unactivated alkenes with diazo compounds is demonstrated. The developed protocol is able to bypass the possibility of the cyclopropanation of an alkene upon its reaction with the acceptor-acceptor diazo compounds. The protocol is highly accomplished due to its compatibility with various unactivated alkenes functionalized with different sensitive functional groups. A rhodacycle π-allyl intermediate has been synthesized and proved to be the active intermediate. Additional mechanistic investigations aided the elucidation of the plausible reaction mechanism.
Collapse
Affiliation(s)
- Pinki Sihag
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Trisha Chakraborty
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
2
|
Wang F, Chen C, Meng Q. Comprehensive Theoretical Study of Cp*Ir III-Catalyzed Intermolecular Enantioselective Allylic C-H Amidation: Reaction Mechanism, Electronic Processes, and Regioselectivity. J Org Chem 2023; 88:2493-2504. [PMID: 36716217 DOI: 10.1021/acs.joc.2c02951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Density functional theory was used to elucidate the reaction mechanism of Cp*IrIII-catalyzed intermolecular regioselective C(sp3)-H amidation of alkenes with methyl dioxazolones. All substrates, intermediates, and transition states were fully optimized at the ωB97XD/6-31G(d,p) level (LANL2DZ(f) for Ir). The computational results revealed that this amidation occurred through the IrIII/IrV catalytic cycle, involving four important elementary steps: C-H bond activation, oxidative addition of methyl dioxazolone, reductive elimination, and proto-demetalation, and the first was the rate-determining step. The C-H bond activation showed good α- and branch-regioselectivity, decided by the distortion energy of 2-pentene and the interaction energy of the transition state, respectively. The oxidative addition of dioxazolone occurred in one elementary step with CO2 disassociation. The reductive elimination showed good branch-regioselectivity determined by the distorted energy of the allyl group. In the proto-demetalation, hydrogen directly transferred from the oxygen atom to the nitrogen atom. Moreover, to clarify the effect of the substituted groups, selected 12 substrates were also discussed in this text.
Collapse
Affiliation(s)
- Fen Wang
- College of Chemistry and Chemical Engineering, Taishan University, Taian271000, Shandong, People's Republic of China
| | - Changbao Chen
- College of Chemistry and Material Science, Shandong Agricultural University, Taian271018, Shandong, People's Republic of China.,Key Laboratory of Agricultural Film Application, Ministry of Agriculture and Rural Affairs, Taian271018, Shandong, People's Republic of China
| | - Qingxi Meng
- College of Chemistry and Material Science, Shandong Agricultural University, Taian271018, Shandong, People's Republic of China.,Key Laboratory of Agricultural Film Application, Ministry of Agriculture and Rural Affairs, Taian271018, Shandong, People's Republic of China
| |
Collapse
|
3
|
Mahato SK, Zhang T, Chatani N. Ir(III)-Catalyzed C(sp 2)–H Amidation of 2-Aroylimidazoles with 2,2,2-Trichloroethoxycarbonyl Azide (TrocN 3). J Org Chem 2022; 87:16390-16398. [DOI: 10.1021/acs.joc.2c02056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sanjit K. Mahato
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Chemistry At CreAgro (Discovery), PI Industries Ltd., Udaipur, Rajasthan 313001, India
| | - Tianhao Zhang
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Center for Environmental Preservation, Osaka University, 2-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Ravindar L, Hasbullah SA, Hassan NI, Qin HL. Cross‐Coupling of C‐H and N‐H Bonds: a Hydrogen Evolution Strategy for the Construction of C‐N Bonds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lekkala Ravindar
- Universiti Kebangsaan Malaysia Fakulti Teknologi dan Sains Maklumat Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Siti Aishah Hasbullah
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Nurul Izzaty Hassan
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Hua-Li Qin
- Wuhan University of Technology School of Chemistry 430070 Hubei CHINA
| |
Collapse
|
5
|
Jardim GAM, de Carvalho RL, Nunes MP, Machado LA, Almeida LD, Bahou KA, Bower JF, da Silva Júnior EN. Looking deep into C-H functionalization: the synthesis and application of cyclopentadienyl and related metal catalysts. Chem Commun (Camb) 2022; 58:3101-3121. [PMID: 35195128 DOI: 10.1039/d1cc07040a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metal catalyzed C-H functionalization offers a versatile platform for methodology development and a wide variety of reactions now exist for the chemo- and site-selective functionalization of organic molecules. Cyclopentadienyl-metal (CpM) complexes of transition metals and their correlative analogues have found widespread application in this area, and herein we highlight several key applications of commonly used transition-metal Cp-type catalysts. In addition, an understanding of transition metal Cp-type catalyst synthesis is important, particularly where modifications to the catalyst structure are required for different applications, and a summary of this aspect is given.
Collapse
Affiliation(s)
- Guilherme A M Jardim
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil. .,Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, UFSCar, 13565-905, Brazil
| | - Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| | - Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| | - Luana A Machado
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil. .,Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Leandro D Almeida
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| | - Karim A Bahou
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - John F Bower
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| |
Collapse
|
6
|
A New Dioxazolone for the Synthesis of 1,2‐Aminoalcohols via Iridium(III)‐Catalyzed C(sp
3
)−H Amidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Antien K, Geraci A, Parmentier M, Baudoin O. A New Dioxazolone for the Synthesis of 1,2-Aminoalcohols via Iridium(III)-Catalyzed C(sp 3 )-H Amidation. Angew Chem Int Ed Engl 2021; 60:22948-22955. [PMID: 34427390 PMCID: PMC8519009 DOI: 10.1002/anie.202110019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 12/14/2022]
Abstract
Vicinal aminoalcohols are widespread structural motifs in bioactive molecules. We report the development of a new dioxazolone reagent containing a p-nitrophenyldifluoromethyl group, which 1. displays a good safety profile; 2. shows a remarkably high reactivity in the oxime-directed iridium(III)-catalyzed amidation of unactivated C(sp3 )-H bonds; 3. leads to amide products which can be hydrolyzed under mild conditions. The amidation reaction is mild, general and compatible with both primary C-H bonds of tertiary and secondary alcohols, as well as secondary C-H bonds of cyclic secondary alcohols. This method provides an easy access to free 1,2-aminoalcohols after efficient and mild cleavage of the oxime directing group and activated amide.
Collapse
Affiliation(s)
- Kevin Antien
- University of BaselDepartment of ChemistrySt. Johanns-Ring 194056BaselSwitzerland
| | - Andrea Geraci
- University of BaselDepartment of ChemistrySt. Johanns-Ring 194056BaselSwitzerland
| | | | - Olivier Baudoin
- University of BaselDepartment of ChemistrySt. Johanns-Ring 194056BaselSwitzerland
| |
Collapse
|
8
|
Sihag P, Jeganmohan M. Rh(III)-Catalyzed allylic C-H amidation of unactivated alkenes with in situ generated iminoiodinanes. Chem Commun (Camb) 2021; 57:6428-6431. [PMID: 34095917 DOI: 10.1039/d1cc02283k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rh(iii)-catalyzed allylic C-H amidation of substituted alkenes with in situ generated iminoiodinanes is demonstrated. The presented protocol is compatible with differently functionalized unactivated terminal alkenes and internal alkenes. In terminal alkenes, branch selectivity was observed exclusively. Based on the detailed mechanistic investigation, a possible reaction mechanism involving the in situ generated π-allyl as well as metal-nitrene intermediates has been proposed.
Collapse
Affiliation(s)
- Pinki Sihag
- Department of Chemistry, Indian Institute of Technology Madras, Chennai - 600036, India.
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai - 600036, India.
| |
Collapse
|
9
|
Wang Y, Lin Z, Oliveira JCA, Ackermann L. Electro-oxidative Intermolecular Allylic C(sp 3)-H Aminations. J Org Chem 2021; 86:15935-15945. [PMID: 34077219 DOI: 10.1021/acs.joc.1c00682] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oxidative intermolecular nitrogenation of C(sp3)-H bonds represents one of the most straightforward strategies to construct nitrogen-containing molecules. However, a sacrificial chemical oxidant is generally required. Herein, we describe electrochemical oxidative intermolecular allylic C(sp3)-H aminations in an undivided cell by electric current. The cross-dehydrogenative amination proceeded efficiently with ample scope under metal- and chemical oxidant-free reaction conditions, giving molecular H2 as the only byproduct.
Collapse
Affiliation(s)
- Yulei Wang
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Zhipeng Lin
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - João C A Oliveira
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| |
Collapse
|
10
|
Ma N, Liu Z, Huang J, Dang Y. Mechanistic studies of Cp*Ir(III)/Cp*Rh(III)-catalyzed branch-selective allylic C-H amidation: why is Cp*Ir(III) superior to Cp*Rh(III)? Org Biomol Chem 2021; 19:3850-3858. [PMID: 33949601 DOI: 10.1039/d1ob00446h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory calculations have revealed the mechanism and origins of the reactivity and regioselectivity of the Cp*Ir(iii)/Cp*Rh(iii)-catalyzed allylic C-H amidation of alkenes and dioxazolones. Generally, the catalytic cycle consists of alkene coordination, C(sp3)-H activation, dioxazolone oxidative addition, reductive elimination and proto-demetallation to give the final amidation product. The C-H activation is found to be the rate-determining step, and it controls the reactivity of the reaction. For the Cp*Ir(iii)-catalyzed system, the C-H activation undergoes an Ir(iii)-assisted proton transfer process with a low energy barrier, elucidating its high reactivity. In contrast, the C-H activation step is more like a direct deprotonation in the Cp*Rh(iii)-catalyzed system, which is responsible for its higher barrier and lower reactivity. The branched-selectivity arises from the electronic effect of the alkyl group on the charge distribution over the allylic moiety. Herein, iridium(v) polarizes the allylic group greater than that of the rhodium(v) system, which accounts for its good regioselectivity. The mechanistic insights will be useful for the further development of transition metal-catalyzed selective C-H amination reactions.
Collapse
Affiliation(s)
- Nan Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China. and School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Zheyuan Liu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Jianhui Huang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yanfeng Dang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
11
|
Kazerouni AM, McKoy QA, Blakey SB. Recent advances in oxidative allylic C-H functionalization via group IX-metal catalysis. Chem Commun (Camb) 2020; 56:13287-13300. [PMID: 33015689 DOI: 10.1039/d0cc05554a] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allylic substitution, pioneered by the work of Tsuji and Trost, has been an invaluable tool in the synthesis of complex molecules for decades. An attractive alternative to allylic substitution is the direct functionalization of allylic C-H bonds of unactivated alkenes, thereby avoiding the need for prefunctionalization. Significant early advances in allylic C-H functionalization were made using palladium catalysis. However, Pd-catalyzed reactions are generally limited to the functionalization of terminal olefins with stabilized nucleophiles. Insights from Li, Cossy, and Tanaka demonstrated the utility of RhCpx catalysts for allylic functionalization. Since these initial reports, a number of key intermolecular Co-, Rh-, and Ir-catalyzed allylic C-H functionalization reactions have been reported, offering significant complementarity to the Pd-catalyzed reactions. Herein, we report a summary of recent advances in intermolecular allylic C-H functionalization via group IX-metal π-allyl complexes. Mechanism-driven development of new catalysts is highlighted, and the potential for future developments is discussed.
Collapse
Affiliation(s)
- Amaan M Kazerouni
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
12
|
Manoharan R, Jeganmohan M. Recent Advancements in Allylic C(sp
3
)–H Functionalization of Olefins Catalyzed by Rh(III) or Ir(III) Complexes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000936] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ramasamy Manoharan
- School of Chemistry and Chemical Engineering Shandong University No. 27 Shanda South Road 250100 Jinan China
| | | |
Collapse
|
13
|
Farr CMB, Kazerouni AM, Park B, Poff CD, Won J, Sharp KR, Baik MH, Blakey SB. Designing a Planar Chiral Rhodium Indenyl Catalyst for Regio- and Enantioselective Allylic C–H Amidation. J Am Chem Soc 2020; 142:13996-14004. [DOI: 10.1021/jacs.0c07305] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Caitlin M. B. Farr
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Amaan M. Kazerouni
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Bohyun Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Christopher D. Poff
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Joonghee Won
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Kimberly R. Sharp
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Simon B. Blakey
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
14
|
Ellman JA, Ackermann L, Shi BF. The Breadth and Depth of C-H Functionalization. J Org Chem 2020; 84:12701-12704. [PMID: 31623443 DOI: 10.1021/acs.joc.9b02663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Lutz Ackermann
- Institut fuer Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen
| | | |
Collapse
|
15
|
Nelson TAF, Hollerbach MR, Blakey SB. Allylic C–H functionalization via group 9 π-allyl intermediates. Dalton Trans 2020; 49:13928-13935. [DOI: 10.1039/d0dt02313b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This perspective presents an analysis of how reagent choice impacts mechanism and regioselectivity in group 9-catalysed allylic C–H functionalization.
Collapse
|